DOI QR코드

DOI QR Code

닭에서 동정된 플르오르퀴놀론 내성 대장균 균주의 분자생물학적 성상에 관한 연구

Molecular Characterization of Fluoroquinolone Resistant Escherichia coli Isolates from Chickens in Korea

  • 성지연 (극동대학교 임상병리학과) ;
  • 오지은 (극동대학교 임상병리학과)
  • Sung, Ji-Youn (Department of Biomedical Laboratory Science, Far East University) ;
  • Oh, Ji-Eun (Department of Biomedical Laboratory Science, Far East University)
  • 투고 : 2016.03.04
  • 심사 : 2016.04.20
  • 발행 : 2016.04.28

초록

본 연구에서는 한국의 닭에서 분리된 E. coli 균주들로부터 퀴놀론계 항생제 내성을 나타내는 균주를 분리 동정하고 그 내성 기전과 유병률에 관하여 조사하였다. 또한 multilocus sequence typing (MLST)을 이용하여 E. coli 균주들의 분자생물학적 성상을 분석하였다. 항생제 감수성 테스트에서 63.5% (54/85) 의 E. coli 균주들에서 퀴놀론계 항생제 내성률을 보였다. 또한 퀴놀론계 항생제 내성을 보이는 54개 모두에서 gyrA 유전자의 sense mutations과 parC 유전자의 $57^{th}$, $80^{th}$, or $84^{th}$residues에서 점돌연변이를 관찰할 수 있었다. MLST를 통한 분석에서 E. coli ST는 parE 유전자의 염기치환과 깊은 상관관계를 보이는 것으로 관찰되었다. 이 결과들을 바탕으로 우리가 먹는 가축 및 가금류에 대한 무분별한 항생제 사용은 항생제 내성균의 증가와 유전변이를 초래함을 알 수 있었다. 따라서 식용 동물에 대한 지속적인 감시와 모니터링을 통하여 항생제 내성균의 확산방지를 통제하는 것이 필요할 것으로 사료된다.

An aim of current study was to investigate the prevalence and the mechanism of quinolone-resistance in E. coli isolates obtained from chicken cecum in Korea. In addition, multilocus sequence typing (MLST) was also performed for the molecular characterization of E. coli isolates. In an antimicrobial susceptibility test by the disk diffusion method, the 63.5% (54/85) of E. coli isolates showed the resistance to quinolone group of antimicrobial agents. All of the 54 E. coli isolates showing resistant to quinolone group had sense mutations in gyrA gene and point mutations at the $57^{th}$, $80^{th}$, or $84^{th}$ residues in parC gene were detected in 90.7% of the isolates. Interestingly, E. coli ST was closely related to amino acid substitutions in parE gene. Our results indicated that the long-term use of antimicrobial agents in food-producing animals was strongly associated with a prevalence of antimicrobial resistance in commensal Enterobacteriaceae, suggesting the need for continuous surveillance and monitoring of antimicrobial resistant determinants in bacterial isolates from food animals.

키워드

참고문헌

  1. N. Aoike, T. Saga, R. Sakata, A. Yoshizumi, S. Kimura, M. Iwata, S. Yoshizawa, Y. Sugasawa, Y. Ishii, K. Yamaguchi, K. Tateda, "Molecular characterization of extraintestinal Escherichia coli isolates in Japan: relationship between sequence types and mutation patterns of quinolone resistance-determining regions analyzed by pyrosequencing", J. Clin. Microbiol., Vol. 51, pp. 1692-1698, 2013. https://doi.org/10.1128/JCM.03049-12
  2. V. Cattoir, L. Poirel, V. Rotimi, CJ. Soussy, P. Nordmann, "Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates", J. Antimicrob. Chemother, Vol. 60, pp. 394-397, 2007. https://doi.org/10.1093/jac/dkm204
  3. "Clinical and Laboratory Standards Institute (CLSI). Performance standard for antimicrobial susceptibility testing; Twenty first informational supplement CLSI Document". M100-S21, Vol. 31, No. 1. Clinical and Laboratory Standards nstitute, Wayne, PA, 2010.
  4. H. K. Dessie, D. H. Bae, Y. J. Lee, "Characterization of integrons and their cassettes n Escherichia coli and Salmonella isolates from oultry in Korea", Poult Sci., Vol. 92, pp. 036-3043, 2013.
  5. P. Heisig, "Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli, Antimicrob". Agents Chemother., Vol. 40, pp. 879-885, 1996.
  6. D. C. Hooper, "Mechanisms of action and resistance of older and newer fluoroquinolones". Clin. Infect. Dis., Vol. 31, Suppl. pp. 24-28, 2000. https://doi.org/10.1086/313915
  7. E. K. Hyytia-Trees, K. Cooper, E.M. Ribot, P. Gerner-Smidt, "Recent developments and future prospects in subtyping of food borne bacterial pathogens", Future Microbiol., Vol. 2, pp. 175-185, 2007. https://doi.org/10.2217/17460913.2.2.175
  8. L. B. Jensen, F. J. Angulo, K. Molbak, H. C. Wegener, "Human health risks associated with antimicrobial use in animals, In Guardabassi L, Jensen LB, Kruse H, editores". p.13-26. Guide to Antimicrobial Use in Animals. Blackwell Publishing Ltd, Oxford, UK, 2008.
  9. H. Y. Kang, Y. S. Jeong, J. Y. Oh, S. H. Tae, C. H. Choi, D. C. Moon, W. K. Lee, Y.C Lee, S. Y. Seol, D. T. Cho, J. C. Lee, "Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea", J. Antimicrob. Chemother., Vol. 55, pp. 639-644, 2005. https://doi.org/10.1093/jac/dki076
  10. M. Karczmarczyk, M. Martins, T. Quinn, N. Leonard, S. Fanning, "Mechanisms of fluoroquinolone resistance in Escherichia coli isolates from food-producing animals", Appl. Environ. Microbiol., Vol. 77, pp. 7113-7120, 2011. https://doi.org/10.1128/AEM.00600-11
  11. S. Paltansing, M. E. Kraakman, J. M. Ras, E. Wessels, A. T. Bernards, "Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an Escherichia coli ST131 clone with a specific mutation in parE", J. Antimicrob. Chemother., Vol. 68, pp. 40-45, 2013. https://doi.org/10.1093/jac/dks365
  12. I. Phillips, M. Casewell, T. Cox, B. De Groot, C. Friis, R. Jones, C. Nightingale, R. Preston, J. Waddell, "Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data", J. Antimicrob. Chemother., Vol. 53, pp. 28-52, 2004.
  13. B. W. Shaheen, R. Nayak, S. L. Foley, D. M. Boothe, "Chromosomal and plasmid-mediated fluoroquinolone resistance mechanisms among broad-spectrum-cephalosporin-resistant Escherichia coli isolates recovered from companion animals in the USA", J. Antimicrob. Chemother., Vol. 68, pp. 1019-1024, 2013. https://doi.org/10.1093/jac/dks514
  14. J. Strahilevitz, G. A. Jacoby, D. C. Hooper, A. Robicsek, "Plasmid mediated quinolone resistance: A multifaceted threat", Clin. Microbiol. Rev., Vol. 22, pp. 664-689, 2009. https://doi.org/10.1128/CMR.00016-09
  15. M. D. Tamang, H. M. Nam, M. H. Chae, S. R. Kim, M. Gurung, G. C. Jang, S. C. Jung, S. K. Lim, "Prevalence of plasmid-mediated quinolone resistance determinants among Escherichia coli isolated from food animals in Korea". Foodborne Pathog. Dis., Vol. 9, pp. 1057-1063, 2012. https://doi.org/10.1089/fpd.2012.1225
  16. C. Torres, M. Zarazaga, "Antibiotics as growth promoters in animals. Are we going down the right road". Gac. Sanit., Vol. 16, pp. 109-112, 2002. https://doi.org/10.1016/S0213-9111(02)71640-3
  17. T. Wirth, D. Falush, R. Lan, F. Colles, P. Mensa, L. H. Wieler, H. Karch, P. R. Reeves, M. C. Maiden, H. Ochman, M. Achtman, "Sex and virulence in Escherichia coli: an evolutionary perspective", Mol. Microbiol., Vol. 60, pp. 1136-1151, 2006. https://doi.org/10.1111/j.1365-2958.2006.05172.x
  18. H. Y. Yang, Y.S. Nam, H. J. Lee, "Prevalence of plasmid-mediated quinolone resistance genes among ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in Korea", Can. J. Infect. Dis. Med. Microbiol., Vol. 25, pp. 163-169, 2014.
  19. Sanghyuk Lee, "Grouping DNA sequences with similarity measure and application", Journal of the Korea Convergence Society, Vol. 4, No. 3, pp. 35-41, 2013. https://doi.org/10.15207/JKCS.2013.4.3.035
  20. Jae-Il Han, Hyun-Ho Sung, Chang-Eun Park, "Study on Convergence Technique Using the Antimicrobial Resistance and Virulence Genes Analysis in Escherichia coli", Journal of the Korea Convergence Society, Vol. 6, No. 5, pp. 77-84, 2015. https://doi.org/10.15207/JKCS.2015.6.5.077