DOI QR코드

DOI QR Code

유전체 생태계 분석을 위한 알고리즘 구현: 미토콘드리아 사례

The Algorithm of implementation for genome analysis ecosystems : Mitochondria's case

  • 최성자 (충남대학교 융복합시스템공학과) ;
  • 조한욱 (충남대학교 전기.전자.통신공학교육과)
  • Choi, Sung-Ja (Dept. of Convergence System Engineering Chungnam National University) ;
  • Cho, Han-Wook (Dept. of Electric, Electronic and Comm. Eng. Edu. Chungnam National University)
  • 투고 : 2016.02.26
  • 심사 : 2016.04.20
  • 발행 : 2016.04.28

초록

융복합 패러다임의 도입은 방대한 유전체 정보의 분석을 위한 컴퓨팅 기술의 연구 및 개발 또한 활발히 진행되고 있다. 최근 유전체 분석 서비스 유형은 개인의 유전체 정보(personal genome analysis)를 읽어서 특정 질환들의 발병 확률 등을 알려주고, 해당 질병을 예방할 수 있도록 식습관, 라이프 스타일등의 변화를 꾀하도록 맞춤형의 서비스를 제공하고 있다. 생물의 특성을 결정하는 정보는 유전자이며, 이 유전자는 DNA 염기서열에 따라 결정되므로, 유전체 정보의 분석기술은 정확하고 빠르게 수행되어야 한다. 정확한 유전체 분석을 빠르게 수행하기위해 K-Mean 클러스터링 기법을 활용하였으며, 코돈 데이타 패턴을 추출하여 유전체 정보 분석에 적용하였다. 또한, 미토콘드리아 데이타군을 실험사례로 제공한다. 본 연구의 결과, 제공된 분석 데이타를 통해 기존의 문자열 형태의 유전체 분석 기법을 이미지 패턴 형태로 추출이 가능하며, 패턴형태의 이미지는 분석시간의 단축과 정확도를 높인다.

The studies on the human environment and ecosystem analysis is being actively researched. In recent years, The service of genome analysis has been offering the customized service to prevent the disease as reading an individual's genome information. The genome information by analyzing technology is being required accurate and fast analyses of ecosystem-dielectrics due to the spread of the disease, the use of genetically modified organism and the influx of exotic. In this paper the algorithm of K-Mean clustering for a new classification system was utilized. It will provide new dielectrics information as quickly and accurately for many biologists.

키워드

참고문헌

  1. Keun-Ho Lee, "A Method of Defense and Security Threats in U-Healthcare Service", Journal of the Korea Convergence Society, Vol. 3, No. 4, pp. 1-5, 2012.
  2. Eun-Hee Park, Hye-Suk Kim, Ja-Ok Kim, "The Effect of Convergence Action Learning techniques in Simulation Class", Journal of the Korea Convergence Society, Vol. 6, No. 5, pp. 241-248, 2015. https://doi.org/10.15207/JKCS.2015.6.5.241
  3. P. Tamayo et al., Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation, PNAS 96: 2907-12, 1999. https://doi.org/10.1073/pnas.96.6.2907
  4. A. Alizadeh et al., Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature 403: 503-11, 2000. https://doi.org/10.1038/35000501
  5. E. Furlong et al., Patterns of Gene Expression During Drosophila Development, Science 293: 1629-33, 2001. https://doi.org/10.1126/science.1062660
  6. Evanno, Guillaume, Sebastien Regnaut, and Jerome Goudet. "Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study." Molecular ecology 14.8 (2005): 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  7. Oja, Merja, Samuel Kaski, and Teuvo Kohonen. "Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum." Neural computing surveys 3.1 (2003): 1-156.
  8. Wang, K. et al. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene 229, 101-108 (1999). https://doi.org/10.1016/S0378-1119(99)00035-9
  9. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863-14868 (1998). https://doi.org/10.1073/pnas.95.25.14863
  10. Nakamura, Yasukazu, Takashi Gojobori, and Toshimichi Ikemura. "Codon usage tabulated from international DNA sequence databases: status for the year 2000." Nucleic acids research 28.1 (2000): 292-292. https://doi.org/10.1093/nar/28.1.292
  11. Crick, Francis HC. "Codon-anticodon pairing: the wobble hypothesis." Journal of molecular biology 19.2 (1966): 548-555. https://doi.org/10.1016/S0022-2836(66)80022-0
  12. Ikemura, Toshimichi. "Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system." Journal of molecular biology 151.3 (1981): 389-409. https://doi.org/10.1016/0022-2836(81)90003-6
  13. Wellmer, Frank, and Jose Luis Riechmann. "Gene network analysis in plant development by genomic technologies." International Journal of Developmental Biology 49.5/6 (2005): 745. https://doi.org/10.1387/ijdb.051991fw
  14. Jobson, J. (1992) Applied Multivariate Data Analysis: Categorical and Multivariate Methods (Springer, NewYork).
  15. Hartigan, J. (1975) Clustering Algorithms (Wiley, New York).
  16. Gordon, A. E. (1981) Classification: Methods for the Exploratory Analysis of Multivariate Data (Chapman & Hall, New York).