DOI QR코드

DOI QR Code

역통계 방법론을 이용한 한반도의 강수 특성 분석

Analysis of the Korean peninsula precipitation using inverse statistics methodology

  • Min, Seungsik (Department of Natural Science, Korea Naval Academy)
  • 투고 : 2015.12.10
  • 심사 : 2016.02.27
  • 발행 : 2016.04.30

초록

본 논문에서는 1973년부터 2014년까지 42년 간, 12개 지역의 일일 강수량 데이터의 역통계(inverse statistics) 분석을 실시하였다. 구체적으로 일일 강수량 x의 확률밀도함수 f(x)를 도출하였고, 특정 강수량 ${\rho}$를 처음으로 넘어서는 기간 ${\tau}_{\rho}$의 분포 $f({\tau}_{\rho})$를 도출하였다. 최종적으로 ${\tau}_{\rho}$의 대푯값인 ${\tau}_{mean}({\rho})$${\rho}$의 관계를 도출하였다. 분석 결과 x와 ${\tau}_{\rho}$는 확장된 지수분포(stretched exponential distribution)를 이루는 것을 확인하였다. 더불어 ${\rho}$${\tau}_{mean}({\rho})$도 확장된 지수함수의 관계를 이루는 것을 알 수 있었다. 이들 분포를 바탕으로 형태 모수(shape parameter) ${\beta}$ 값을 도출하고, 12개 지역의 강수 특성을 분석하였다.

In this paper, we analyze the inverse statistics of rainfall for 12 regions from 1973 to 2014. We obtain a probability density function f(x) of daily rainfall x, and $f({\tau}_{\rho})$ of the first passage time ${\tau}_{\rho}$ for a given ${\rho}$. Lastly, we derive the relation between ${\rho}$ and ${\tau}_{mean}({\rho})$, i.e., the averaged value of ${\tau}_{\rho}$. The analyses result in the x and ${\tau}_{\rho}$ have stretched exponential distributions. Also, ${\tau}_{mean}({\rho})$ has the form of a stretched exponential function. We derive the shape parameter ${\beta}$ of the distribution, and analyze the characteristics of 12 regional rainfalls.

키워드

참고문헌

  1. Ding, M. and Rangarajan, G. (2004). New Directions in Statistical Physics, Springer.
  2. Ding, M. and Yang, W. (1995). Distribution of first return time in fractional Brownian motion and its application to the study of on-off intermittency, Physical Review E, 52, 207. https://doi.org/10.1103/PhysRevE.52.207
  3. Honerkamp, J. and Baumgartner, A. (1986). Anomalous diffusion on a fractals: a first passage time problem, Zeitschrift fur Physik B: Condensed Matter, 64, 253-255. https://doi.org/10.1007/BF01303711
  4. Jensen, M. H. (1999). Multiscaling and structure functions in turbulence: an alternative approach, Physical Review Letter, 83, 76-79. https://doi.org/10.1103/PhysRevLett.83.76
  5. Jensen, M. H., Johansen, A., Petroni, F., and Simonsen, I. (2004). Inverse statistics in the foreign exchange market, Physica A, 340, 678. https://doi.org/10.1016/j.physa.2004.05.024
  6. Jensen, M. H., Johansen, A., and Simonsen, I. (2003). Inverse statistics in economics: the gain-loss asymmetry, Physica A, 324, 338. https://doi.org/10.1016/S0378-4371(02)01884-8
  7. Lana, X., Burgueno, A., Martinez, M. D., and Serra, C. (2009). A review of statistical analyses on monthly and daily rainfall in Catalonia, Journal of Weather & Climate of the Western Mediterranean, 6, 15-29.
  8. Lee, C.-Y., Kim, J., and Hwang, I. (2008). Inverse statistics of the Korea composite stock price index, Journal of the Korean Physical Society, 52, 517-523. https://doi.org/10.3938/jkps.52.517
  9. McCauley, J. L. (2004). Dynamics of Markets: Econophysics and Finance, Cambridge University Press.
  10. Rangarajan, G. and Ding, M. (2000a). First passage time distribution for anomalous diffusion, Physics Letters A, 273, 322-330. https://doi.org/10.1016/S0375-9601(00)00518-1
  11. Rangarajan, G. and Ding, M. (2000b). Anomalous diffusion and the first passage time problem, Physical Review E, 62, 120-133. https://doi.org/10.1103/PhysRevE.62.120
  12. Rangarajan, G. and Ding, M. (2003). First passage distributions for long memory processes, LNP, 621, 167-180.
  13. Simonsen, I., Jensen, M. H., and Johansen, A. (2002). Optimal investment horizon, The European Physical Journal B, 27, 583-586. https://doi.org/10.1140/epjb/e2002-00193-x
  14. Wilson, P. S. and Toumi, R. (2005). A fundamental probability distribution for heavy rainfall, Geophysical Research Letters, 32, 812.