참고문헌
- D. D. Anderson, G. W. Chang, and M. Zafrullah, Integral domains of finite t-character, J. Algebra 396 (2013), 169-183. https://doi.org/10.1016/j.jalgebra.2013.08.014
- D. D. Anderson, J. Matijevic, and W. Nichols, The Krull intersection Theorem. II, Pacific J. Math. 66 (1976), no. 1, 15-22. https://doi.org/10.2140/pjm.1976.66.15
- J. T. Arnold and J. Brewer, On flat overrings, ideal transforms and generalized transforms of a commutative ring, J. Algebra 18 (1971), 254-264. https://doi.org/10.1016/0021-8693(71)90058-5
- J. A. Beachy andW. D.Weakley, Piecewise Noetherian rings, Comm. Algebra 12 (1984), no. 21-22, 2679-2706. https://doi.org/10.1080/00927878408823127
- J. A. Beachy andW. D.Weakley, A note on prime ideals which test injectivity, Comm. Algebra 15 (1987), no. 3, 471-478. https://doi.org/10.1080/00927878708823428
- A. Benhissi, CCA pour les ideaux radicaux et divisoriels, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 44(92) (2001), no. 2, 119-135.
-
G. W. Chang, Strong Mori domains and the ring
$D[X]_{N_v}$ , J. Pure Appl. Algebra 197 (2005), no. 1-3, 293-304. https://doi.org/10.1016/j.jpaa.2004.08.036 -
D. Costa, J. Mott, and M. Zafrullah, The construction D +
$XD_S$ [X], J. Algebra 53 (1978), no. 2, 423-439. https://doi.org/10.1016/0021-8693(78)90289-2 - M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in: Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
- D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835-2852. https://doi.org/10.1080/00927878908823879
- S. El Baghdadi and S. Gabelli, Ring-theoretic properties of PvMDs, Comm. Algebra 35 (2007), no. 5, 1607-1625. https://doi.org/10.1080/00927870601169283
- S. El Baghdadi, H. Kim, and F. Wang, A note on generalized Krull domains, J. Algebra Appl. 13 (2014), no. 7, 1450029, 18 pp.
- A. Facchini, Generalized Dedekind domains and their injective modules, J. Pure Appl. Algebra 94 (1994), no. 2, 159-173. https://doi.org/10.1016/0022-4049(94)90030-2
- M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181 (1996), no. 3, 803-835. https://doi.org/10.1006/jabr.1996.0147
- R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989), no. 8, 1955-1969. https://doi.org/10.1080/00927878908823829
-
B. G. Kang, Prufer v-multiplication domains and the ring
$R[X]_{N_v}$ , J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9 - H. Kim and T. I. Kwon, Integral domains which are t-locally Noetherian, J. Chungcheong Math. Soc. 24 (2011), 843-848.
- H. Kim, T. I. Kwon, and M. S. Rhee, A note on zero divisors in w-Noetherian-like rings, Bull. Korean Math. Soc. 51 (2014), no. 6, 1851-1861. https://doi.org/10.4134/BKMS.2014.51.6.1851
- D. J. Kwak and Y. S. Park, On t-flat overrings, Chinese J. Math. 23 (1995), no. 1, 17-24.
- C. P. Lu, Modules satisfying ACC on a certain type of colons, Pacific J. Math. 131 (1988), no. 2, 303-318. https://doi.org/10.2140/pjm.1988.131.303
- C. P. Lu, Modules and rings satisfying (accr), Proc. Amer. Math. Soc. 117 (1993), no. 1, 5-10. https://doi.org/10.1090/S0002-9939-1993-1104398-7
- J. Ohm and R. Pendleton, Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631-639. https://doi.org/10.1215/S0012-7094-68-03565-5
- M. H. Park, Power series rings over strong Mori domains, J. Algebra 270 (2003), no. 1, 361-368. https://doi.org/10.1016/j.jalgebra.2003.07.009
- A. C. Pearson, Noncommutative Piecewise Noetherian Rings, Ph. D. thesis, Northern Illinois University, 2011.
- M. Tamekkante, K. Louartiti, and M. Chhiti, Chain conditions in amalgamated algebras along an ideal, Arab. J. Math. (Springer) 2 (2013), no. 4, 403-408. https://doi.org/10.1007/s40065-013-0075-0
- F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Al-gebra 25 (1997), no. 4, 1285-1306. https://doi.org/10.1080/00927879708825920