DOI QR코드

DOI QR Code

L2 HARMONIC 1-FORMS ON SUBMANIFOLDS WITH WEIGHTED POINCARÉ INEQUALITY

  • Chao, Xiaoli (Department of Mathematics Southeast University) ;
  • Lv, Yusha (Department of Mathematics Southeast University)
  • Received : 2015.03.22
  • Published : 2016.05.01

Abstract

In the present note, we deal with $L^2$ harmonic 1-forms on complete submanifolds with weighted $Poincar{\acute{e}}$ inequality. By supposing submanifold is stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^2$ harmonic 1-forms, which are some extension of the results of Kim and Yun, Sang and Thanh, Cavalcante Mirandola and $Vit{\acute{o}}rio$.

Keywords

References

  1. D. M. Calderbank, P. Gauduchon, and M. Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), no. 1, 214-255. https://doi.org/10.1006/jfan.2000.3563
  2. G. Carron, $L^2$-Cohomologie et inegalites de Sobolev, Math. Ann. 314 (1999), no. 4, 613-639. https://doi.org/10.1007/s002080050310
  3. M. P. Cavalcante, H. Mirandola, and F. Vitorio, $L^2$ harmonic 1-form on submanifolds with finite total curvature, J. Geom. Anal. 24 (2014), no. 1, 205-222. https://doi.org/10.1007/s12220-012-9334-0
  4. X. Cheng, $L^2$ harmonic forms and stability of hypersurfaces with constant mean curvature, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 2, 225-239. https://doi.org/10.1007/BF01244246
  5. N. T. Dung and K. Seo, Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature, Ann. Global Anal. Geom. 41 (2012), no. 4, 447-460. https://doi.org/10.1007/s10455-011-9293-x
  6. N. T. Dung and K. Seo, Vanishing theorems for $L^2$ harmonic 1-forms on complete submanifolds in a Riemannian manifold, J. Math. Anal. Appl. 423 (2015), no. 2, 1594-1609. https://doi.org/10.1016/j.jmaa.2014.10.076
  7. N. T. Dung and C. J. Sung, Manifolds with a weighted Poincare inequality, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1783-1794. https://doi.org/10.1090/S0002-9939-2014-11971-X
  8. H. P. Fu and Z. Q. Li, $L^2$ harmonic 1-forms on complete submanifolds in Euclidean space, Kodai Math. J. 32 (2009), no. 3, 432-441. https://doi.org/10.2996/kmj/1257948888
  9. D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727.
  10. J. J. Kim and G. Yun, On the structure of complete hypersurfaces in a Riemannian manifold of nonnegative curvature and $L^2$ harmonic forms, Arch. Math. (Basel) 100 (2013), no. 4, 369-380. https://doi.org/10.1007/s00013-013-0486-3
  11. K. H. Lam, Results on a weighted Poincare inequality of complete manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5043-5062. https://doi.org/10.1090/S0002-9947-10-04894-4
  12. P. F. Leung, An estimate on the Ricci curvature of a submanifold and some applications, Proc. Amer. Math. Soc. 114 (1992), no. 4, 1051-1061. https://doi.org/10.1090/S0002-9939-1992-1093601-7
  13. P. Li, Geometric Analysis, Cambridge Studies in Advanced Mathematics, 134. Cambridge University Press, Cambridge, 2012.
  14. P. Li and J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), no. 3, 501-534. https://doi.org/10.4310/jdg/1090348357
  15. V. Matheus, Vanishing theorems for $L^2$ harmonic forms on complete Riemannian manifolds, arXiv: 1407.0236v1.
  16. R. Miyaoka, $L^2$ harmonic 1-forms on a complete stable minimal hypersurface, Geometry and global analysis (Sendai, 1993), 289-293, Tohoku Univ., Sendai, 1993.
  17. B. Palmer, Stability of minimal hypersurfaces, Comment. Math. Helv. 66 (1991), no. 2, 185-188. https://doi.org/10.1007/BF02566644
  18. N. N. Sang and N. T. Thanh, Stability minimal hypersurfaces with weighted Poincare inequality in a Riemannian manifold, Commun. Korean. Math. Soc. 29 (2014), no. 1, 123-130. https://doi.org/10.4134/CKMS.2014.29.1.123
  19. K. Seo, Rigidity of minimal submanifolds in hyperbolic space, Arch. Math. (Basel) 94 (2010), no. 2, 173-181. https://doi.org/10.1007/s00013-009-0096-2
  20. K. Seo, $L^2$ harmonic 1-forms on minimal submanifolds in hyperbolic space, J. Math. Anal. Appl. 371 (2010), no. 2, 546-551. https://doi.org/10.1016/j.jmaa.2010.05.048
  21. K. Shiohama and H. Xu, The topological sphere theorem for complete submanifolds, Compos. Math. 107 (1997), no. 2, 221-232. https://doi.org/10.1023/A:1000189116072
  22. S. Tanno, $L^2$ harmonic forms and stability of minimal hypersurfaces, J. Math. Soc. Japan. 48 (1996), no. 4, 761-768. https://doi.org/10.2969/jmsj/04840761
  23. S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670. https://doi.org/10.1512/iumj.1976.25.25051
  24. G. Yun, Total scalar curvature and $L^2$ harmonic 1-forms on a minimal hypersurface in Euclidean space, Geom. Dedicata. 89 (2002), 135-141.

Cited by

  1. Harmonic p-forms on Hadamard manifolds with finite total curvature pp.1572-9060, 2018, https://doi.org/10.1007/s10455-018-9609-1