References
- D. M. Calderbank, P. Gauduchon, and M. Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), no. 1, 214-255. https://doi.org/10.1006/jfan.2000.3563
-
G. Carron,
$L^2$ -Cohomologie et inegalites de Sobolev, Math. Ann. 314 (1999), no. 4, 613-639. https://doi.org/10.1007/s002080050310 -
M. P. Cavalcante, H. Mirandola, and F. Vitorio,
$L^2$ harmonic 1-form on submanifolds with finite total curvature, J. Geom. Anal. 24 (2014), no. 1, 205-222. https://doi.org/10.1007/s12220-012-9334-0 -
X. Cheng,
$L^2$ harmonic forms and stability of hypersurfaces with constant mean curvature, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 2, 225-239. https://doi.org/10.1007/BF01244246 - N. T. Dung and K. Seo, Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature, Ann. Global Anal. Geom. 41 (2012), no. 4, 447-460. https://doi.org/10.1007/s10455-011-9293-x
-
N. T. Dung and K. Seo, Vanishing theorems for
$L^2$ harmonic 1-forms on complete submanifolds in a Riemannian manifold, J. Math. Anal. Appl. 423 (2015), no. 2, 1594-1609. https://doi.org/10.1016/j.jmaa.2014.10.076 - N. T. Dung and C. J. Sung, Manifolds with a weighted Poincare inequality, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1783-1794. https://doi.org/10.1090/S0002-9939-2014-11971-X
-
H. P. Fu and Z. Q. Li,
$L^2$ harmonic 1-forms on complete submanifolds in Euclidean space, Kodai Math. J. 32 (2009), no. 3, 432-441. https://doi.org/10.2996/kmj/1257948888 - D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727.
-
J. J. Kim and G. Yun, On the structure of complete hypersurfaces in a Riemannian manifold of nonnegative curvature and
$L^2$ harmonic forms, Arch. Math. (Basel) 100 (2013), no. 4, 369-380. https://doi.org/10.1007/s00013-013-0486-3 - K. H. Lam, Results on a weighted Poincare inequality of complete manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5043-5062. https://doi.org/10.1090/S0002-9947-10-04894-4
- P. F. Leung, An estimate on the Ricci curvature of a submanifold and some applications, Proc. Amer. Math. Soc. 114 (1992), no. 4, 1051-1061. https://doi.org/10.1090/S0002-9939-1992-1093601-7
- P. Li, Geometric Analysis, Cambridge Studies in Advanced Mathematics, 134. Cambridge University Press, Cambridge, 2012.
- P. Li and J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), no. 3, 501-534. https://doi.org/10.4310/jdg/1090348357
-
V. Matheus, Vanishing theorems for
$L^2$ harmonic forms on complete Riemannian manifolds, arXiv: 1407.0236v1. -
R. Miyaoka,
$L^2$ harmonic 1-forms on a complete stable minimal hypersurface, Geometry and global analysis (Sendai, 1993), 289-293, Tohoku Univ., Sendai, 1993. - B. Palmer, Stability of minimal hypersurfaces, Comment. Math. Helv. 66 (1991), no. 2, 185-188. https://doi.org/10.1007/BF02566644
- N. N. Sang and N. T. Thanh, Stability minimal hypersurfaces with weighted Poincare inequality in a Riemannian manifold, Commun. Korean. Math. Soc. 29 (2014), no. 1, 123-130. https://doi.org/10.4134/CKMS.2014.29.1.123
- K. Seo, Rigidity of minimal submanifolds in hyperbolic space, Arch. Math. (Basel) 94 (2010), no. 2, 173-181. https://doi.org/10.1007/s00013-009-0096-2
-
K. Seo,
$L^2$ harmonic 1-forms on minimal submanifolds in hyperbolic space, J. Math. Anal. Appl. 371 (2010), no. 2, 546-551. https://doi.org/10.1016/j.jmaa.2010.05.048 - K. Shiohama and H. Xu, The topological sphere theorem for complete submanifolds, Compos. Math. 107 (1997), no. 2, 221-232. https://doi.org/10.1023/A:1000189116072
-
S. Tanno,
$L^2$ harmonic forms and stability of minimal hypersurfaces, J. Math. Soc. Japan. 48 (1996), no. 4, 761-768. https://doi.org/10.2969/jmsj/04840761 - S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670. https://doi.org/10.1512/iumj.1976.25.25051
-
G. Yun, Total scalar curvature and
$L^2$ harmonic 1-forms on a minimal hypersurface in Euclidean space, Geom. Dedicata. 89 (2002), 135-141.
Cited by
- Harmonic p-forms on Hadamard manifolds with finite total curvature pp.1572-9060, 2018, https://doi.org/10.1007/s10455-018-9609-1