DOI QR코드

DOI QR Code

Fuel Characteristics of Quercus variabilis bio-oil by Vaccum Distillation

감압증류에 의한 굴참나무 바이오오일의 연료 특성 변화

  • Chea, Kwang-Seok (Department of wood chemistry & microbiology, Korea Forest Research Institute) ;
  • Jo, Tae-Su (Department of wood chemistry & microbiology, Korea Forest Research Institute) ;
  • Lee, Soo-Min (Department of wood chemistry & microbiology, Korea Forest Research Institute) ;
  • Lee, Hyung Won (School of Environmental Engineering, University of Seoul) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • 채광석 (국립산림과학원 화학미생물과) ;
  • 조태수 (국립산림과학원 화학미생물과) ;
  • 이수민 (국립산림과학원 화학미생물과) ;
  • 이형원 (서울시립대학교 환경공학과) ;
  • 박영권 (서울시립대학교 환경공학과)
  • Received : 2015.11.03
  • Accepted : 2016.03.18
  • Published : 2016.03.30

Abstract

The technology of fast pyrolysis is regarded as a promising route to convert lignocellulose biomass into bio-oil which can be upgraded to transportable fuels and high quality chemical products. Despite these promises, commercialization of bio-oil for fuels and chemicals production is limited due to its notoriously undesirable characteristics, such as high and changing viscosity, high water and oxygen contents, low heating value and high acidity. Therefore, in this study quality improvement of bio-oil through vaccum distillation had been targeted. A 600 g of cork oak(Quercus variabilis) which grounded 0.8~1.4 mm was processed into bio-oil via fast pyrolysis for 1.64 seconds at $465^{\circ}C$ and temperature of vaccum distillation(100hPa) was designed to control, $40^{\circ}C$, 50, 60, 70, and 80 for 30min. Bio-oil, biochar, and gas of pyrolytic product were produced to 62.6, 18.0 and 19.3 wt%, respectively. The water content, viscosity, HHV(Higher Heating Value) and pH of bio-oil were measured to 0.9~26.1 wt%, 4.2~11.0 cSt 3,893~5,230 kcal/kg and 2.6~3.0, respectively. Despite these quality improvement, production was still limited due to its notoriously undesirable characteristics, therefore continous quality improvement will be needed in order to use practical fuel of bio-oil.

급속열분해 기술은 바이오매스를 수송용 연료와 고품질의 석유화학 생산물로 업그레이드 할 수 있는 바이오오일을 만드는 유망한 수단으로 주목 받고 있다. 이러한 기대에도 불구하고 연료와 석유화학 생산물의 상업성은 바이오오일의 높고 잘 변하는 점도, 많은 수분과 산소 함량, 낮은 발열량 및 산성도와 같은 상당히 바람직하지 않은 특징 때문에 한계가 있다. 그래서 본 연구는 가압증류를 통해 바이오오일의 품질 개선을 목표로 수행하였다. 가압증류에 따른 바이오오일의 특성 변화를 알아보기 위하여 0.8~1.4 mm 크기의 굴참나무(Quercus variabilis) 시료 600 g을 $465^{\circ}C$에서 1.6초 동안 급속열분해하여 바이오오일을 제조하고, 감압증류(100hPa) 온도는 대조구, $40^{\circ}C$, 50, 60, 70 및 80에서 각각 30분간 처리하였다. 급속열분해를 통해 생산된 바이오오일, 바이오차 및 가스는 각각 62.6 wt%, 18.0 및 19.3으로 나타났다. 또한 온도별로 생성된 바이오오일은 수분함량 0.9~26.1 wt%, 점도 4.2~11.0 cSt, 발열량 3,893~5,230 kcal/kg 및 pH 2.6~3.0 수준으로 긍정적 효과가 나타났다. 이러한 바이오오일 품질개선에도 불구하고 점도는 반대로 증가했으며 여전히 높은 산소 함량, 낮은 발열량 및 산성도 때문에 바이오오일을 실용적인 연료로 사용하기 위해서는 지속적으로 품질 개선이 필요하다.

Keywords

References

  1. K. S. Chea, T. S. Jo, S. H. Choi, S. M. Lee, H. W. Hwang, J. W. Choi, Properties of Quercus variabilis bio-oil prepared by sample preparation, J. of Korean Oil Chemists' Soc., 32, 83 (2015).
  2. S. K. Joo, I. G. Lee, H. W. Lee, K. S. Chea, T. S. Jo, S. C. Jung, S. C. Kim, C. H. Ko, Y. K. Park, Catalytic Conversion of Pinus Densiflora Over Mesoporous Catalysts Using Pyrolysis Process, J. of Nanoscience and Nanotechnology, 15, 1 (2015). https://doi.org/10.1166/jnn.2015.9731
  3. Venderbosch R, Prins W. Fast pyrolysis technology development. Biofuels Bioprod Biorefining, 4, 178 (2010). https://doi.org/10.1002/bbb.205
  4. Czernik S. Storage of biomass pyrolysis oils. In: Proceedings of thespecia-list workshop on biomass pyrolysis oil properties and combustion, 26 (1994).
  5. Czernik S, Johnson DK, Black S. Stability of wood fast pyrolysis oil. Biomass Bioenergy, 7 187 (1994). https://doi.org/10.1016/0961-9534(94)00058-2
  6. Hu X, Wang Y, Mourant D, Gunawan R, Lievens C, Chaiwat W, et al. Polymerization on heating up of bio-oil: a model compound study. AIChE J., 59 888 (2012).
  7. Li R, Zhong ZP, Jin BS, Jiang XX, Wang CH, Zheng AJ. Influence of reaction conditions and red brick on fast pyrolysis of rice residue(huskandstraw) in a spout-fluid bed. Can J Chem Eng., 90 1202 (2011).
  8. Oasmaa A, Kuoppala E, Elliott DC. Development of the basis for ananalytical protocol for feeds and products of bio-oil hydrotreatment. Energy Fuels, 26 2454 (2012). https://doi.org/10.1021/ef300252y
  9. Bridgwater A, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org Geochem, 30 1479 (1999). https://doi.org/10.1016/S0146-6380(99)00120-5
  10. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy, 38 68 (2012). https://doi.org/10.1016/j.biombioe.2011.01.048
  11. Xiong W-M, Zhu M-Z, Deng L, Fu Y, Guo Q-X. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts. Energy Fuels, 23 2278 (2009). https://doi.org/10.1021/ef801021j
  12. Mohan D, Pittman Jr CU, Steele PH. Pyrolysis of wood/biomassforbio-oil: a critical review. Energy Fuels, 20 848 (2006). https://doi.org/10.1021/ef0502397
  13. Boucher M, Chaala A, Pakdel H, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. PartII: stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy, 19 351 (2000). https://doi.org/10.1016/S0961-9534(00)00044-1
  14. Diebold JP. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. Golden, CO : National Renewable Energy Laboratory (2000).
  15. Elliott D, Lee S, Hart T. Stabilization of Fast Pyrolysis Oil : Post (2012).
  16. Zhang Q, Chang J, Wang T, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag, 48 87 (2007). https://doi.org/10.1016/j.enconman.2006.05.010
  17. Kang B-S, Lee KH, Park HJ, Park Y-K, Kim J-S. Fast pyrolysis of radiata pine in a bench scale plant with a fluidized bed: influence of a char separation system and reaction conditions on the production of bio-oil. J Anal Appl Pyrolysis, 76 32 (2006). https://doi.org/10.1016/j.jaap.2005.06.012
  18. Bridgewater AV. Biomass fast pyrolysis. Therm Sci., 8 21 (2004). https://doi.org/10.2298/TSCI0402021B

Cited by

  1. 촉매열분해를 이용한 백합나무 바이오오일의 연료 특성 vol.34, pp.1, 2017, https://doi.org/10.12925/jkocs.2017.34.1.1
  2. 에스터화 반응을 이용한 신갈나무 바이오오일 품질 개선 vol.35, pp.4, 2016, https://doi.org/10.12925/jkocs.2018.35.4.975