DOI QR코드

DOI QR Code

에너지 변조 필터를 이용한 이중 에너지 콘빔 CT의 선량 평가

Evaluation of Radiation Dose for Dual Energy CBCT Using Multi-Grid Device

  • 주은빈 (이화여자대학교 의과학과) ;
  • 안소현 (연세대학교 의과대학 방사선종양학교실) ;
  • 조삼주 (연세대학교 의과대학 방사선종양학교실) ;
  • 금기창 (연세대학교 의과대학 방사선종양학교실) ;
  • 이레나 (이화여자대학교 의학전문대학원 방사선종양학교실)
  • Ju, Eun Bin (Department of Medical Science, Ewha Womans University) ;
  • Ahn, So Hyun (Department of Radiation Oncology, School of Medicine, Yonsei University) ;
  • Cho, Sam Ju (Department of Radiation Oncology, School of Medicine, Yonsei University) ;
  • Keum, Ki Chang (Department of Radiation Oncology, School of Medicine, Yonsei University) ;
  • Lee, Rena (Department of Biomedical Engineering, School of Medicine, Ewha Womans University)
  • 투고 : 2016.03.11
  • 심사 : 2016.03.28
  • 발행 : 2016.03.31

초록

본 연구에서는 이중에너지 영상을 획득하는 방법으로, 구리판을 이용한 에너지 변조 필터를 사용하였을 때의 선량을 계산 및 측정하였고, 기존의 다른 방법들과 선량을 비교하였다. 몬테칼로 전산모사를 이용하여 에너지 변조 필터에 의한 선량 변화를 평가하기 위하여 MCNPX를 사용하였다. 두경부, 흉부, 복부 촬영에 주로 사용되는 관전압인 80, 120 kVp에 대한 스펙트럼을 SPEC78 프로그램으로 생성하여 선원을 모사하였고, 구리 물질로 이루어진 에너지 변조 필터(밀도: $8.96g/cm^3$)는 두께를 0.5 mm부터 2.0 mm까지 0.5 mm 간격으로 변화시켜가면서 선원으로부터 20.0 cm 거리에 X-선 창을 절반만 가리도록 모델링 하였다. 몬테칼로 전산모사 값과 실제 선량 값을 비교하기 위해서는 교정 상수가 필요하므로, Gafchromic EBT3 필름에 알고 있는 선량을 조사한 후 판독하여 선량 교정 곡선을 획득하였다. 실험과 동일한 조건으로 MCNPX의 f6 tally로 획득한 결과값과 측정값 간의 선량 환산 인자는 $7.2*10^4cGy/output$으로 구해졌으며, 관전압 80 kVp과 관전류 6 mA의 조건으로 콘빔 CT 촬영 시, 평균 10.1 cGy (표준편차 2.7 cGy) 조사됨을 알 수 있었다. 에너지 변조 필터에 기반한 이중 에너지 영상 획득 기술을 적용한 본 연구에서는 이중 에너지 콘빔 CT 시스템의 선량이 단일 에너지 CT 시스템의 선량보다 33~40% 감소함을 알 수 있다. 또한, 에너지 변조 필터에서 발생한 산란선에 의한 선량 증가 효과는 거의 없었다. 따라서, 인체 내 물질 분별력이 우수하여 임상에 널리 응용되었던 기존 이중 에너지 CT 시스템의 상대적으로 피폭선량이 높다는 단점을 효과적으로 개선할 수 있다.

The paper discusses radiation dose of dual energy CT on which copper modulation layer, is mounted in order to improve diagnostic performance of the dual energy CT. The radiation dose is estimated using MCNPX and its results are compared with that of the conventional dual energy CT system. CT X-ray spectra of 80 and 120 kVp, which are usually used for thorax, abdominal, head, and neck CT scans, were generated by the SPEC78 code and were used for the source specification 'SDEF' card for MCNPX dose modeling. The copper modulation layer was located 20 cm away from a source covering half of the X-ray window. The radiation dose was measured as changing its thickness from 0.5 to 2.0 mm at intervals of 0.5 mm. Since the MCNPX tally provides only normalized values to a single particle, the dose conversion coefficients of F6 tally for the modulation layer-based dual energy CBCT should be calculated for matching the modeling results into the actual dose. The dose conversion coefficient is $7.2*10^4cGy/output$ that is obtained from dose calibration curve between F6 tally and experimental results in which GAFCHORMIC EBT3 films were exposed by an already known source. Consequently, the dose of the modulation layer-based dual energy cone beam CT is 33~40% less than that of the single energy CT system. On the basis of the results, it is considered that scattered dose produced by the copper modulation layer is very small. It shows that the modulation layer-based dual energy CBCT system can effectively reduce radiation dose, which is the major disadvantage of established dual energy CT.

키워드

참고문헌

  1. Ding GX, Duggan DM, Coffey CW et al: A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiotherapy and Oncology 85(1):116-125 (2007) https://doi.org/10.1016/j.radonc.2007.06.015
  2. AAPM Task Group No. 142: Quality assurance of medical accelerators. American Association of Physicists in Medicine. (2009)
  3. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA: Flat-panel cone-beam computed tomography for image-guided radiation therapy. International Journal of Radiation Oncology Biology Physics. 53(5):1337-1349 (2002) https://doi.org/10.1016/S0360-3016(02)02884-5
  4. Danad I, Fayad ZA, Willemink MJ, Min JK: New applications of cardiac computed tomography: dual-energy, spectral, and molecular CT imaging. Cardiovascular Imaging 8(6):710-723 (2015)
  5. Johnson T: Dual energy CT in clinical practice. Springer Science & Business Media (2011), pp:3-8
  6. Primak AN, Giraldo JR, Liu X, Yu L, McCollough CH: Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Medical physics 36(4):1359-1369 (2009) https://doi.org/10.1118/1.3083567
  7. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG: Technical principles of dual source CT. European journal of radiology 68(3):362-368 (2008) https://doi.org/10.1016/j.ejrad.2008.08.013
  8. Johnson TR, Krauss B, Sedlmair M et al: Material differentiation by dual energy CT: initial experience. European radiology 17(6):1510-7 (2007) https://doi.org/10.1007/s00330-006-0517-6
  9. Bauer RW, Kramer S, Renker M et al: Dose and image quality at CT pulmonary angiography-comparison of first and second generation dual-energy CT and 64-slice CT. European radiology 21(10):2139-2147 (2011) https://doi.org/10.1007/s00330-011-2162-y
  10. Schenzle JC, Sommer WH, Neumaier K et al: Dual energy CT of the chest: how about the dose? Investigative radiology 45(6):347-353 (2010) https://doi.org/10.1097/RLI.0b013e3181df901d
  11. Ho LM, Yoshizumi TT, Hurwitz LM et al: Dual energy versus single energy MDCT: measurement of radiation dose using adult abdominal imaging protocols. Academic radiology 16(11):1400-1407 (2009) https://doi.org/10.1016/j.acra.2009.05.002
  12. Matsumoto K, Jinzaki M, Tanami Y et al: Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259(1):257-262(2011) https://doi.org/10.1148/radiol.11100978
  13. Kalender WA, Perman WH, Vetter JR, Klotz E: Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Medical physics, 13(3):334-339 (1986) https://doi.org/10.1118/1.595958
  14. Hao J, Kang K, Zhang L, Chen Z: A novel image optimization method for dual-energy computed tomography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 722:34-42 (2013)
  15. Altman A, Carmi R: A Double-Layer Detector, Dual-Energy CT-Principles, Advantages and Applications. Medical Physics 36(6):2750-2750 (2009)
  16. Virginia T, John E, Raju S et al: Dose Reduction in CT while Maintaining Diagnostic Confidence: Diagnostic Reference Levels at Routine Head, Chest, and Abdominal CT-IAEA-coordinated Research Project. Radiology 240(3):828-834 (2006) https://doi.org/10.1148/radiol.2403050993
  17. Song WY, Kamath S, Ozawa S et al: A dose comparison study between $XVI^{(R)}$ and $OBI^{(R)}$ CBCT systems. Med phy 35(2):480-486 (2008) https://doi.org/10.1118/1.2825619
  18. Brown TA, Hogstrom KR, Alvarez D et al: Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams. Medical physics 39(12):7412-7417 (2012) https://doi.org/10.1118/1.4767770
  19. Cho YS, Jeong WK, Kim Y, Heo JN: Radiation Doses of Dual-Energy CT for Abdominopelvic CT: Comparison with Single-Energy CT. Journal of the Korean Society of Radiology 65(5):505-512 (2011) https://doi.org/10.3348/jksr.2011.65.5.505
  20. Raju R, Thompson AG, Lee K et al: Reduced iodine load with CT coronary angiography using dual-energy imaging: a prospective randomized trial compared with standard coronary CT angiography. Journal of cardiovascular computed tomography 8(4):282-288 (2014) https://doi.org/10.1016/j.jcct.2014.06.003
  21. Kerl JM, Bauer RW, Maurer TB et al: Dose levels at coronary CT angiography-a comparison of dual energy-, dual source- and 16-slice CT. European radiology 21(3):530-537 (2011) https://doi.org/10.1007/s00330-010-1954-9
  22. Halliburton SS, Sola S, Kuzmiak SA et al: Effect of dual-source cardiac computed tomography on patient radiation dose in a clinical setting: comparison to single-source imaging. Journal of cardiovascular computed tomography 2(6):392-400 (2008) https://doi.org/10.1016/j.jcct.2008.09.003