DOI QR코드

DOI QR Code

Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia

  • Chen, Lianxiang (Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University) ;
  • Wang, Wei (Department of Emergency, Inner Mongolia People's Hospital) ;
  • Cao, Lixia (Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University) ;
  • Li, Zhijun (Department of Anatomy, Basic Medical College, The Inner Mongolia Medical University) ;
  • Wang, Xing (Department of Anatomy, Basic Medical College, The Inner Mongolia Medical University)
  • Received : 2015.11.09
  • Accepted : 2016.02.11
  • Published : 2016.04.30

Abstract

Long non-coding RNAs (lncRNAs) are involved in multiple cellular events, as well as in tumorigenesis. Colon cance-rassociated transcript-1 (CCAT1) gene encodes an lncRNA whose over-activation was observed in an expanding list of primary human solid tumors and tumor cell lines, however its biological roles in acute myeloid leukaemia (AML) has not been reported yet at present. In this study, the aberrant upregulation of CCAT1 was detected in French-American-British M4 and M5 subtypes of adult AML patients. By gain- and loss-of-function analysis, we determined that CCAT1 repressed monocytic differentiation and promoted cell growth of HL-60 by sequestering tumor suppressive miR-155. Accordingly, a significant decrease in miR-155 level was detected in AML patients. Reintroduction of miR-155 into HL-60 cells restored monocytic maturation and repressed cell proliferation. Furthermore, CCAT1 could up-regulated c-Myc via its competing endogenous RNA (ceRNA) activity on miR-155. In conclusion, these results revealed new mechanism of lncRNA CCAT1 in AML development, and suggested that the manipulation of CCAT1 expression could serve as a potential strategy in AML therapy.

Keywords

References

  1. Alaiyan, B., Ilyayev, N., Stojadinovic, A., Izadjoo, M., Roistacher, M., Pavlov, V., Tzivin, V., Halle, D., Pan, H., Trink, B., et al. (2013). Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence. BMC Cancer 13, 196. https://doi.org/10.1186/1471-2407-13-196
  2. Arancio, W., Pizzolanti, G., Genovese, S.I., Baiamonte, C., and Giordano, C. (2014). Competing endogenous RNA and interactome bioinformatic analyses on human telomerase. Rejuvenation Res. 17, 161-167. https://doi.org/10.1089/rej.2013.1486
  3. Calin, G.A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S.E., Iorio, M.V., Visone, R., Sever, N.I., Fabbri, M., et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J. Med. 353,1793-1801. https://doi.org/10.1056/NEJMoa050995
  4. Deng, L., Yang, S.B., Xu, F.F., and Zhang, J.H. (2015). Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. J. Exper. Clin. Cancer Res. 34, 18. https://doi.org/10.1186/s13046-015-0136-7
  5. Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., , E., Dahlberg, J.E. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 102, 3627-3632. https://doi.org/10.1073/pnas.0500613102
  6. Fernando, T.R., Rodriguez-Malave, N.I., Waters, E.V., Yan, W., Casero, D., Basso, G., Pigazzi, M., and Rao, D.S. (2015). LncRNA expression discriminates karyotype and predicts survival in BLymphoblastic Leukemia. Mol. Cancer Res.13, 839-851. https://doi.org/10.1158/1541-7786.MCR-15-0006-T
  7. Gerloff, D., Grundler, R., Wurm, A.A., Brauer-Hartmann, D., Katzerke, C., Hartmann, J.U., Madan, V., Muller-Tidow, C., Duyster, J., Tenen, D.G. et al. (2015). NF-${\kappa}B$/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia. Leukemia 29, 535-547. https://doi.org/10.1038/leu.2014.231
  8. Hughes, J.M., Legnini, I., Salvatori, B., Masciarelli, S., Marchioni, M., Fazi, F., Morlando, M., Bozzoni, I., and Fatica, A. (2015). C/ EBPalpha-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget 6, 18534-18544. https://doi.org/10.18632/oncotarget.4069
  9. Ichikawa, M., Asai, T., Saito, T., Seo, S., Yamazaki, I., Yamagata, T., Mitani, K., Chiba, S., Ogawa, S., Kurokawa, M., et al. (2004). AML- 1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10, 299-304. https://doi.org/10.1038/nm997
  10. Jeziskova, I., Musilova, M., Culen, M., Foltankova, V., Dvorakova, D., Mayer, J., and Racil, Z. (2015). Distribution of mutations in DNMT3A gene and the suitability of mutations in R882 codon for MRD monitoring in patients with AML. Int. J. Hematol. 102, 553-557. https://doi.org/10.1007/s12185-015-1856-3
  11. Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W.O., Corcoran, M., Grander, D., and Morris, K.V. (2013). A pseudogene longnoncoding- RNA network regulates PTEN transcription and translation in human cells. Nat. Struct. Mol. Biol. 20, 440-446. https://doi.org/10.1038/nsmb.2516
  12. Jongen-Lavrencic, M., Sun, S.M., Dijkstra, M.K., Valk, P.J.M., Lowenberg, B. (2008). MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111, 5078-5085. https://doi.org/10.1182/blood-2008-01-133355
  13. Kallen, A.N., Zhou, X.B., Xu, J., Qiao, C., Ma, J., Yan, L., Lu, L., Liu, C., Yi, J.S., Zhang, H., et al. (2013). The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101-112. https://doi.org/10.1016/j.molcel.2013.08.027
  14. Khandelwal, A., Bacolla, A., Vasquez, K.M., and Jain, A. (2015). Long non-coding RNA: A new paradigm for lung cancer. Mol. Carcinog. 54, 1235-1251. https://doi.org/10.1002/mc.22362
  15. Kluiver, J., Poppema, S., De Jong, D., Blokzijl, T., Harms, G., Jacobs, S., Kroesen, B.J., and van den Berg, A. (2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243-249. https://doi.org/10.1002/path.1825
  16. Kluiver, J., Haralambieva, E., De Jong, D., Blokzijl, T., Jacobs, S., Kroesen, B.J., Poppema, S., and van den Berg, A. (2006). Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45, 147-153. https://doi.org/10.1002/gcc.20273
  17. Kumar, M.S., Armenteros-Monterroso, E., East, P., Chakravorty, P., Matthews, N., Winslow, M.M., and Downward, J. (2014). HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature 505, 212-217. https://doi.org/10.1038/nature12785
  18. Mizrahi, I., Mazeh, H., Grinbaum, R., Beglaibter, N., Wilschanski, M., Pavlov, V., Adileh, M., Stojadinovic, A., Avital, I., Gure, A.O., et al. (2015). Colon cancer associated transcript-1 (CCAT1) expression in adenocarcinoma of the stomach. J. Cancer 6, 105-110. https://doi.org/10.7150/jca.10568
  19. Palma, C.A., Al Sheikha, D., Lim, T.K., Bryant, A., Vu, T.T., Jayaswal, V., and Ma, D.D. (2014). MicroRNA-155 as an inducer of apoptosis and cell differentiation in acute myeloid leykaemia. Mol. Cancer. 13, 79. https://doi.org/10.1186/1476-4598-13-79
  20. Peng, W., Si, S., Zhang, Q., Li, C., Zhao, F., Wang, F., Yu, J., and Ma, R. (2015). Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer pro- gression. J. Exp. Clin. Cancer Res. 34, 79. https://doi.org/10.1186/s13046-015-0197-7
  21. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W.J., and Pandolfi, P.P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033-1038. https://doi.org/10.1038/nature09144
  22. Rokah, O.H., Granot, G., Ovcharenko, A., Modai, S., Pasmanik-Chor, M., Toren, A., Shomron, N., and Shpilberg, O. (2012). Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One 7, e35501. https://doi.org/10.1371/journal.pone.0035501
  23. Saadatpour, A., Guo, G., Orkin, S.H., and Yuan, G.C. (2014). Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol. 15, 525. https://doi.org/10.1186/s13059-014-0525-9
  24. Sakurai, M., Kunimoto, H., Watanabe, N., Fukuchi, Y., Yuasa, S., Yamazaki, S., Nishimura, T., Sadahira, K., Fukuda, K., Okano, H., et al. (2014). Impaired hematopoietic differentiation of RUNX1- mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia 28, 2344-2354. https://doi.org/10.1038/leu.2014.136
  25. Sen, R., Ghosal, S., Das, S., Balti, S., and Chakrabarti, J. (2014). Competing endogenous RNA: the key to posttranscriptional regulation. ScientificWorldJournal 2014, 896206.
  26. Song, X., Cao, G., Jing, L., Lin, S., Wang, X., Zhang, J., Wang, M., Liu, W., and Lv, C. (2014). Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J. Cell. Mol. Med. 18, 991-1003. https://doi.org/10.1111/jcmm.12243
  27. Su, R., Lin, H.S., Zhang, X.H., Yin, X.L., Ning, H.M., Liu, B., Zhai, P.F., Gong, J.N., Shen, C., Song, L., et al. (2015). MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene 34, 3226-3239. https://doi.org/10.1038/onc.2014.274
  28. Sun, S., Sun, P., Wang, C., and Sun, T. (2014). Downregulation of microRNA-155 accelerates cell growth and invasion by targeting cmyc in human gastric carcinoma cells. Oncol. Rep. 32, 951-956. https://doi.org/10.3892/or.2014.3288
  29. Wang, J., Liu, X., Wu, H., Ni, P., Gu, Z., Qiao, Y., Chen, N., Sun, F., and Fan, Q. (2010). CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38, 5366-5383. https://doi.org/10.1093/nar/gkq285
  30. Wang, Y., Wu, P., Lin, R., Rong, L., Xue, Y., and Fang, Y. (2015). LncRNA NALT interaction with NOTCH1 promoted cell proliferation in pediatric T cell acute lymphoblastic leukemia. Sci. Rep. 5, 13749. https://doi.org/10.1038/srep13749
  31. Xue, H., Hua, L.M., Guo, M., and Luo, J.M. (2014). SHIP1 is targeted by miR-155 in acute myeloid leukemia. Oncol. Rep. 32, 2253-2259. https://doi.org/10.3892/or.2014.3435
  32. Yang, F., Xue, X., Bi, J., Zheng, L., Zhi, K., Gu, Y., and Fang, G. (2013). Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J. Cancer Res. Clin. Oncol. 139, 437-445. https://doi.org/10.1007/s00432-012-1324-x
  33. Ye, N., Wang, B., Quan, Z.F., Cao, S.J., Wen, X.T., Huang, Y., Huang, X.B., Wu, R., Ma, X.P., and Yan, Q.G. (2014). Functional roles of long non-coding RNA in human breast cancer. Asian Pac. J. Cancer Prev. 15, 5993-5997. https://doi.org/10.7314/APJCP.2014.15.15.5993
  34. Yokoyama, Y., Wan, X., Shinohara, A., Takahashi, S., Takahashi, Y., Niwa, K., and Tamaya, T. (2000). Expression of PTEN and PTEN pseudogene in endometrial carcinoma. Int. J. Mol. Med. 6, 47-50.
  35. Yu, G., Yao, W., Gumireddy, K., Li, A., Wang, J., Xiao, W., Chen, K., Xiao, H., Li, H., Tang, K., et al. (2014). Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol. Cancer Ther. 13, 3086-3097. https://doi.org/10.1158/1535-7163.MCT-14-0245
  36. Yuan, J.H., Yang, F., Wang, F., Ma, J.Z., Guo, Y.J., Tao, Q.F., Liu, F., Pan, W., Wang, T.T., Zhou, C.C., et al. (2014). A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25, 666-681. https://doi.org/10.1016/j.ccr.2014.03.010
  37. Zhang, H., Chen, Z., Wang, X., Huang, Z., He, Z., and Chen, Y. (2013). Long non-coding RNA: a new player in cancer. J. Hematol. Oncol. 6, 37. https://doi.org/10.1186/1756-8722-6-37
  38. Zhu, H., Zhou, X., Chang, H., Li, H., Liu, F., Ma, C., and Lu, J. (2015). CCAT1 promotes hepatocellular carcinoma cell proliferation and invasion. Int. J. Clin. Exper. Pathol. 8, 5427-5434.

Cited by

  1. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells vol.9, pp.4, 2017, https://doi.org/10.3390/cancers9040038
  2. A 4-lncRNA scoring system for prognostication of adult myelodysplastic syndromes vol.1, pp.19, 2017, https://doi.org/10.1182/bloodadvances.2017008284
  3. LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18-4 by acting as a decoy for microRNA-19b-3p vol.53, pp.3, 2017, https://doi.org/10.1007/s11626-016-0102-5
  4. Long non-coding RNA CCAT1/miR-218/ZFX axis modulates the progression of laryngeal squamous cell cancer vol.39, pp.6, 2017, https://doi.org/10.1177/1010428317699417
  5. CCAT1: an oncogenic long noncoding RNA in human cancers vol.143, pp.4, 2017, https://doi.org/10.1007/s00432-016-2268-3
  6. Long non-coding RNA CCAT1 is overexpressed in oral squamous cell carcinomas and predicts poor prognosis vol.6, pp.4, 2017, https://doi.org/10.3892/br.2017.876
  7. LncRNA CCAT1 modulates the sensitivity of paclitaxel in nasopharynx cancers cells via miR-181a/CPEB2 axis vol.16, pp.8, 2017, https://doi.org/10.1080/15384101.2017.1301334
  8. Long non-coding RNA CCAT1/miR-148a axis promotes osteosarcoma proliferation and migration through regulating PIK3IP1 vol.49, pp.6, 2017, https://doi.org/10.1093/abbs/gmx041
  9. Colon cancer associated transcripts in human cancers vol.94, 2017, https://doi.org/10.1016/j.biopha.2017.07.073
  10. Long non-coding RNAs in leukemia vol.24, pp.4, 2017, https://doi.org/10.1097/MOH.0000000000000354
  11. MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts vol.130, pp.11, 2017, https://doi.org/10.1182/blood-2016-10-697698
  12. Long non-coding RNA GAS5 polymorphism predicts a poor prognosis of acute myeloid leukemia in Chinese patients via affecting hematopoietic reconstitution vol.58, pp.8, 2017, https://doi.org/10.1080/10428194.2016.1266626
  13. Identification of lncRNA functions in lung cancer based on associated protein-protein interaction modules vol.6, pp.1, 2016, https://doi.org/10.1038/srep35939
  14. Upregulation of long noncoding RNA zinc finger antisense 1 enhances epithelial–mesenchymal transition in vitro and predicts poor prognosis in glioma vol.39, pp.3, 2017, https://doi.org/10.1177/1010428317695022
  15. Differential expression profile analysis of lncRNA UCA1α regulated mRNAs in bladder cancer 2017, https://doi.org/10.1002/jcb.26345
  16. Long noncoding RNAs: pivotal regulators in acute myeloid leukemia vol.5, pp.1, 2016, https://doi.org/10.1186/s40164-016-0059-9
  17. MicroRNAs and their variants in an RNA world: implications for complex interactions and diverse roles in an RNA regulatory network 2016, https://doi.org/10.1093/bib/bbw124
  18. Inhibition of proliferation and invasion of hepatocellular carcinoma cells by lncRNA-ASLNC02525 silencing and the mechanism vol.51, pp.3, 2017, https://doi.org/10.3892/ijo.2017.4069
  19. The lncRNA SNHG5/miR-32 axis regulates gastric cancer cell proliferation and migration by targeting KLF4 vol.31, pp.3, 2017, https://doi.org/10.1096/fj.201600994R
  20. MicroRNAs as New Biomarkers for Diagnosis and Prognosis, and as Potential Therapeutic Targets in Acute Myeloid Leukemia vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020460
  21. CX-3543 Promotes Cell Apoptosis through Downregulation of CCAT1 in Colon Cancer Cells vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/9701957
  22. CRISPR/Cas9 Knockout Strategies to Ablate CCAT1 lncRNA Gene in Cancer Cells vol.20, pp.1, 2018, https://doi.org/10.1186/s12575-018-0086-5
  23. Long Noncoding RNAs in Acute Myeloid Leukemia Patients vol.22, pp.10, 2018, https://doi.org/10.1089/gtmb.2018.0143
  24. Construction and analysis of a lncRNA (PWRN2)-mediated ceRNA network reveal its potential roles in oocyte nuclear maturation of patients with PCOS vol.16, pp.1, 2018, https://doi.org/10.1186/s12958-018-0392-4
  25. Identification of long non-coding RNA competing interactions and biological pathways associated with prognosis in pediatric and adolescent cytogenetically normal acute myeloid leukemia vol.18, pp.1, 2018, https://doi.org/10.1186/s12935-018-0621-0
  26. Expression profile analysis of long non-coding RNA in acute myeloid leukemia by microarray and bioinformatics vol.109, pp.2, 2018, https://doi.org/10.1111/cas.13465
  27. Long noncoding RNA NEAT1 modulates cell proliferation and apoptosis by regulating miR-23a-3p/SMC1A in acute myeloid leukemia vol.234, pp.5, 2019, https://doi.org/10.1002/jcp.27393
  28. Long Non-Coding RNA and Acute Leukemia vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030735
  29. : Roles and functions in human cancers pp.00219541, 2019, https://doi.org/10.1002/jcp.28176
  30. LncRNAs: From Basic Research to Medical Application vol.13, pp.3, 2016, https://doi.org/10.7150/ijbs.16968
  31. Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer vol.8, pp.13, 2017, https://doi.org/10.18632/oncotarget.15045
  32. miRNA and lncRNA as biomarkers in cholangiocarcinoma(CCA) vol.8, pp.59, 2017, https://doi.org/10.18632/oncotarget.19044
  33. The lncRNA CCAT1 Upregulates Proliferation and Invasion in Melanoma Cells via Suppressing miR-33a vol.26, pp.2, 2016, https://doi.org/10.3727/096504017x14920318811749
  34. LncRNA BX357664 inhibits cell proliferation and invasion and promotes cell apoptosis in human colorectal cancer cells vol.15, pp.6, 2016, https://doi.org/10.3892/ol.2018.8435
  35. Long noncoding RNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma via MAPK pathway vol.104, pp.1, 2018, https://doi.org/10.5301/tj.5000662
  36. LncRNA LOXL1-AS1 Promotes the Proliferation and Metastasis of Medulloblastoma by Activating the PI3K/AKT Pathway vol.2018, pp.None, 2016, https://doi.org/10.1155/2018/9275685
  37. Long non-coding RNA CCAT1 as a diagnostic and prognostic molecular marker in various cancers: a meta-analysis vol.9, pp.34, 2018, https://doi.org/10.18632/oncotarget.24923
  38. Identification of Novel Functional Variants of SIN3A and SRSF1 among Somatic Variants in Acute Myeloid Leukemia Patients vol.41, pp.5, 2016, https://doi.org/10.14348/molcells.2018.0051
  39. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication vol.4, pp.4, 2016, https://doi.org/10.3390/ncrna4040040
  40. Long non-coding RNA CCAT1 is a prognostic biomarker for the progression of oral squamous cell carcinoma via miR-181a-mediated Wnt/β-catenin signaling pathway vol.18, pp.21, 2016, https://doi.org/10.1080/15384101.2019.1662257
  41. The Regulatory Roles of Long Noncoding RNAs in Acute Myeloid Leukemia vol.9, pp.None, 2016, https://doi.org/10.3389/fonc.2019.00570
  42. Long Noncoding RNAs: Emerging Players in Medulloblastoma vol.7, pp.None, 2019, https://doi.org/10.3389/fped.2019.00067
  43. Long noncoding RNA HOTTIP mediates SRF expression through sponging miR‐150 in hepatic stellate cells vol.23, pp.2, 2019, https://doi.org/10.1111/jcmm.14068
  44. Pivotal prognostic and diagnostic role of the long non-coding RNA colon cancer-associated transcript 1 expression in human cancer vol.19, pp.2, 2016, https://doi.org/10.3892/mmr.2018.9721
  45. Long noncoding RNA RUSC1-AS-N promotes cell proliferation and metastasis through Wnt/β-catenin signaling in human breast cancer vol.19, pp.2, 2019, https://doi.org/10.3892/mmr.2018.9763
  46. Long non-coding RNAs in Oral squamous cell carcinoma: biologic function, mechanisms and clinical implications vol.18, pp.None, 2016, https://doi.org/10.1186/s12943-019-1021-3
  47. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia vol.12, pp.None, 2016, https://doi.org/10.1186/s13045-019-0734-5
  48. Prediction of competing endogenous RNA coexpression network as prognostic markers in AML vol.11, pp.10, 2019, https://doi.org/10.18632/aging.101985
  49. MicroRNA-155: A Master Regulator of Inflammation vol.39, pp.6, 2016, https://doi.org/10.1089/jir.2018.0155
  50. Downregulation of lncRNA CCAT1 enhances 5-fluorouracil sensitivity in human colon cancer cells vol.20, pp.None, 2019, https://doi.org/10.1186/s12860-019-0188-1
  51. Long Noncoding RNAs in Acute Myeloid Leukemia: Functional Characterization and Clinical Relevance vol.11, pp.11, 2016, https://doi.org/10.3390/cancers11111638
  52. Transcriptional networks in acute myeloid leukemia vol.58, pp.12, 2016, https://doi.org/10.1002/gcc.22794
  53. Long non-coding RNA PTTG3P functions as an oncogene by sponging miR-383 and up-regulating CCND1 and PARP2 in hepatocellular carcinoma vol.19, pp.1, 2019, https://doi.org/10.1186/s12885-019-5936-2
  54. LINC01123, a c-Myc-activated long non-coding RNA, promotes proliferation and aerobic glycolysis of non-small cell lung cancer through miR-199a-5p/c-Myc axis vol.12, pp.1, 2019, https://doi.org/10.1186/s13045-019-0773-y
  55. LncRNA SBF2-AS1 promotes the progression of cervical cancer by regulating miR-361-5p/FOXM1 axis vol.47, pp.1, 2016, https://doi.org/10.1080/21691401.2019.1577883
  56. Crosstalk Between MYC and lncRNAs in Hematological Malignancies vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.579940
  57. Oncogenic Long Noncoding RNA DARS-AS1 in Childhood Acute Myeloid Leukemia by Binding to microRNA-425 vol.19, pp.None, 2016, https://doi.org/10.1177/1533033820965580
  58. Long Non-coding RNA Colon Cancer-Associated Transcript-1 Promotes Migration, Invasion, and Epithelial Mesenchymal Transition of Lung Adenocarcinoma by Suppressing miR-219-1 vol.11, pp.None, 2016, https://doi.org/10.3389/fgene.2020.00929
  59. Identification of distinctive long noncoding RNA competitive interactions and a six‐methylated‐gene prognostic signature in acute myeloid leukemia with −5/del(5q) or −7/del(7q) vol.121, pp.2, 2016, https://doi.org/10.1002/jcb.29391
  60. MicroRNAs: pivotal regulators in acute myeloid leukemia vol.99, pp.3, 2020, https://doi.org/10.1007/s00277-019-03887-5
  61. lncRNA CCAT1/miR-490-3p/MAPK1/c-Myc positive feedback loop drives progression of acute myeloid leukaemia vol.167, pp.4, 2016, https://doi.org/10.1093/jb/mvz107
  62. Expression of non-coding RNAs in hematological malignancies vol.875, pp.None, 2020, https://doi.org/10.1016/j.ejphar.2020.172976
  63. LncRNA SNHG5 regulates SOX4 expression through competitive binding to miR-489-3p in acute myeloid leukemia vol.69, pp.6, 2016, https://doi.org/10.1007/s00011-020-01345-x
  64. LINC01128 resisted acute myeloid leukemia through regulating miR-4260/NR3C2 vol.21, pp.7, 2020, https://doi.org/10.1080/15384047.2020.1740054
  65. Overexpression of long noncoding RNA HOXA‐AS2 predicts an adverse prognosis and promotes tumorigenesis via SOX4/PI3K/AKT pathway in acute myeloid leukemia vol.44, pp.8, 2016, https://doi.org/10.1002/cbin.11370
  66. LINC00449 regulates the proliferation and invasion of acute monocytic leukemia and predicts favorable prognosis vol.235, pp.10, 2016, https://doi.org/10.1002/jcp.29487
  67. Competing endogenous RNA regulation in hematologic malignancies vol.509, pp.None, 2020, https://doi.org/10.1016/j.cca.2020.05.045
  68. LncRNAs in Cancer: From garbage to Junk vol.12, pp.11, 2016, https://doi.org/10.3390/cancers12113220
  69. LINC00649 underexpression is an adverse prognostic marker in acute myeloid leukemia vol.20, pp.None, 2016, https://doi.org/10.1186/s12885-020-07331-0
  70. The Role of cis - and trans -Acting RNA Regulatory Elements in Leukemia vol.12, pp.12, 2020, https://doi.org/10.3390/cancers12123854
  71. Trdmt1 3'-untranslated region functions as a competing endogenous RNA in leukemia HL-60 cell differentiation vol.54, pp.2, 2021, https://doi.org/10.1590/1414-431x20209869
  72. Identification of Potential Novel Prognosis-Related Genes Through Transcriptome Sequencing, Bioinformatics Analysis, and Clinical Validation in Acute Myeloid Leukemia vol.12, pp.None, 2016, https://doi.org/10.3389/fgene.2021.723001
  73. The role of long non‐coding RNAs and downstream signaling pathways in leukemia progression vol.39, pp.1, 2016, https://doi.org/10.1002/hon.2776
  74. Identification of Potential Key lncRNAs in the Context of Mouse Myeloid Differentiation by Systematic Transcriptomics Analysis vol.12, pp.5, 2021, https://doi.org/10.3390/genes12050630
  75. Long noncoding RNAs have pivotal roles in chemoresistance of acute myeloid leukemia vol.26, pp.7, 2016, https://doi.org/10.1016/j.drudis.2021.03.017
  76. Dysregulation of miRNA in Leukemia: Exploiting miRNA Expression Profiles as Biomarkers vol.22, pp.13, 2021, https://doi.org/10.3390/ijms22137156
  77. The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer vol.9, pp.8, 2016, https://doi.org/10.3390/biomedicines9080921
  78. Long non-coding RNA HOTAIR regulates myeloid differentiation through the upregulation of p21 via miR-17-5p in acute myeloid leukaemia vol.18, pp.10, 2016, https://doi.org/10.1080/15476286.2020.1854520
  79. What is beyond LncRNAs in breast cancer: A special focus on colon cancer-associated Transcript-1 (CCAT-1) vol.6, pp.4, 2021, https://doi.org/10.1016/j.ncrna.2021.11.001
  80. WT1-AS/IGF2BP2 Axis Is a Potential Diagnostic and Prognostic Biomarker for Lung Adenocarcinoma According to ceRNA Network Comprehensive Analysis Combined with Experiments vol.11, pp.1, 2016, https://doi.org/10.3390/cells11010025