DOI QR코드

DOI QR Code

엽록체 DNA 바코드 분석을 통한 한국산 두릅나무과 식물 14종의 유연관계 분석

Phylogenetic analysis of 14 Korean Araliaceae species using chloroplast DNA barcode analysis

  • 황환수 (강원대학교 산림환경과학대학 산림자원학과) ;
  • 최용의 (강원대학교 산림환경과학대학 산림자원학과)
  • Hwang, Hwan Su (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Choi, Yong Eui (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University)
  • 투고 : 2016.01.16
  • 심사 : 2016.03.18
  • 발행 : 2016.03.31

초록

한국에 분포하는 두릅나무과 식물 대부분은 중요한 약용 식물로 경제적인 가치가 크다. 본 연구는 분자적 방법인 엽록체 DNA 바코드 염기서열 분석을 통해 한국에 자생하고 있는 두릅나무과 식물 14종 전체의 속 및 종간 유연관계를 파악해 보고 이를 구별할 수 있는 마커를 개발하기 위해 수행되었다. 국제 생물 DNA 바코드 컨소시엄(CBOL, the Consortium for the Barcode of Life)이 DNA barcoding marker로 제안한 엽록체 DNA 7영역의 염기서열을 분석한 결과, psbA-trnH영역에서 가장 많은 삽입, 결실 및 염기치환이 나타났으며 조사된 한국의 두릅나무과 식물 14종 모두 구분 될 수 있었다. 또한 각각의 영역에서 특정 속과 종만이 지니는 특이적인 염기서열을 찾을 수 있었다. 인삼의 경우 중국삼과 한국삼의 염기서열에는 차이가 전혀 없었다. 7영역을 모두 유합하여 작성한 계통수에서는 통탈목이 특이성을 나타내며 가장 기부에 분계조를 형성하였다. 두릅나무속과 인삼속은 자매군을 형성하였고, 오갈피속 5 종 역시 서로 높은 유연관계를 나타내었다. 결론적으로 한국에 자생하는 14종의 두릅나무과 식물들이 모두 엽록체 DNA 바코드 마커 개발을 통해 동정이 가능함을 확인하였다.

Most Araliaceae plant species distributed in Korea are economically important because of their high medicinal values. This study was conducted to develop barcode markers from sequence analysis of chloroplast DNA in 14 taxa of Araliaceae species grown in South Korea. Sequencing of seven chloroplast DNA regions was performed to establish the DNA barcode markers, as suggested by the Consortium for the Barcode of Life (CBOL). From the sequence analysis of chloroplast DNA, we identified specific sequences and nucleotides that allowed us to discriminate among each other 14 Korean Araliaceae species. The sequence in the region of psbA-trnH revealed the most frequent DNA indels and substitutions of all 7 regions studied. This psbA-trnH marker alone can discriminate among all 14 species. There are no differences between Korean and Chinese Panax ginseng in all seven sequenced chloroplast DNA regions. A phylogenetic tree constructed using the seven chloroplast DNA regions revealed that Tetrapanax papyriferus should be classified as an independent clade. The Aralia and Panax genera showed a close phylogenetic relationship. Five species in the Eleutherococcus genus were more closely related to Kalopanax septemlobus than to any Panax species.

키워드

참고문헌

  1. Artyukova EV, Gontcharov AA, Kozyrenko MM, Reunova GD, Zhuravlev YN (2005) Phylogenetic relationships of the far eastern Araliaceae inferred from ITS sequences of nuclear rDNA. Russ J Genet 41:649-658 https://doi.org/10.1007/s11177-005-0140-7
  2. Bae E, Yook C, Oh O, Chang S, Nohara T, Kim D (2001) Metabolism of chiisanoside from Acanthopanax divaricatus var. albeofructus by human intestinal bacteria and its relation to some biological activities. Biol Pharm Bull 24:582-585 https://doi.org/10.1248/bpb.24.582
  3. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794-12797 https://doi.org/10.1073/pnas.0905845106
  4. Chandler GT, and Plunkett GM (2004) Evolution in Apiales:nuclear and chloroplast markers together in (almost) perfect harmony. Bot J Linn Soc 144:123-147 https://doi.org/10.1111/j.1095-8339.2003.00247.x
  5. Davydov M, Krikorian AD (2000) Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: a closer look. J Ethnopharmacol 72:345-393 https://doi.org/10.1016/S0378-8741(00)00181-1
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791 https://doi.org/10.2307/2408678
  7. Fujikawa T, Yamaguchi A, Morita I, Takeda H, Nishibe S (1996) Protective effects of Acanthopanax senticosus Harms from Hokkaido and its components on gastric ulcer in restrained cold water stressed rats. Biol Pharm Bull 19:1227-1230 https://doi.org/10.1248/bpb.19.1227
  8. Hahn D, Kasai R, Kim J, Taniyasu S, Tanaka O (1984) A new glycosyl ester of a 3, 4-seco-triterpene from korean medicinal plant, Acanthopanax chiisanensis (Araliaceae). Chem Pharm Bull 32:1244-1247 https://doi.org/10.1248/cpb.32.1244
  9. Hebert PDN, Cywinska A, Ball SL, Waard JRd (2003) Biological identifications through DNA barcodes. P. R. Soc. London, Series B 270:313-321 https://doi.org/10.1098/rspb.2002.2218
  10. Jung S, Huh H, Hong J, Choi J, Chun H, Bang K, Huh M (2003) Genetic diversity and population structure of Kalopanax pictus (Araliaceae). J Plant Biol 46:255-262 https://doi.org/10.1007/BF03030372
  11. Kim CH (2007) Araliaceae, The Genera of Vascular Plants of Korea, flora of Korea editorial committee (eds), 155, Academy publishing Co., Seoul, Korea. pp.725-732
  12. Kim GR, Kim HR, Choi HS, Han JG, Kim SY, Kim CS (2015) Phylogenetic relationship of Araliaceae in Korea by seed morphological characteristics. J Wetlands Research 17:139-145 https://doi.org/10.17663/JWR.2015.17.2.139
  13. Kim NH, Yang DC, Eom AH (2004) A phylogenetic relationships of Araliaceae based on PCR-RAPD and ITS sequences. Korean J Plant Res 17:82-93
  14. Kim WJ, Ji Y, Lee YM, Kang YM, Choi G, Moon BC (2015) Development of molecular markers for the authentication of Zanthoxyli Pericarpium by the analysis of rDNA-ITS DNA barcode regions. Kor J Herbology 30:41-47 https://doi.org/10.6116/kjh.2015.30.3.41.
  15. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the noncoding trnH-psbA spacer region. PLoS ONE 2:e508 https://doi.org/10.1371/journal.pone.0000508
  16. Lahaye R1, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci U S A 105:2923-2928 https://doi.org/10.1073/pnas.0709936105
  17. Lee CH, Lee ST (1991) A palynotaxonomic study of the genus Fatsia Decne. et Planch. and its relatives (Araliaceae). Kor J Pla Tax 21:9-25 https://doi.org/10.11110/kjpt.1991.21.1.009
  18. Lee CH, Wen J (2004) Phylogeny of Panax using chloroplast trnC-trnD intergenic region and the utility of trnC-trnD in interspecific studies of plants. Mol Phylogenet Evol 31:894-903 https://doi.org/10.1016/j.ympev.2003.10.009
  19. Lee GH, Jung JW, Ahn EM (2009) Antioxidant activity of isolated compounds from the shoot of Aralia elata Seem. Kor J Herbology 24:137-142
  20. Lee J, Kim CS, Lee IY (2015a) Discrimination of Echinochloa colona (L.) Link from other Echinochloa species using DNA Barcode. Weed Turf Sci 4:225-229 https://doi.org/10.5660/WTS.2015.4.3.225
  21. Lee J, Kim CS, Lee IY (2015b) Molecular identification of Pooideae, Poaceae in Korea. Weed Turf Sci 4:18-25 https://doi.org/10.5660/WTS.2015.4.1.18
  22. Lowry II PP, Plunkett GM, Wen J (2004) Generic relationships in Araliaceae: looking into the crystal ball. S Afr J Bot 70:382-392 https://doi.org/10.1016/S0254-6299(15)30221-0
  23. Ma SJ, Kuk JH, Ko BS, Park KH (1995) Isolation of 3,4-dihydroxybenzoic acid with antimicrobial activity from bark of Aralia elata. Agr Chem Biotechnol (1):46
  24. Ma SJ, Kuk JH, Ko BS, Park KH (1996) Isolation and characterization of 4-hydroxycinnamic acid with antimicrobial activity from Aralia elata. Agr Chem Biotechnol 39:265-267
  25. Nakai T (1939) Flora Sylvatica Koreana, Vol. X VI, Forestal experiment station, Government general of Chosen, Seoul, Korea, pp.1-48
  26. Oh O, Chang S, Yook C, Yang K, Park S, Nohara T (2000) Two 3, 4-seco-lupane triterpenes from leaves of Acanthopanax divaricatus var. albeofructus. Chem Pharm Bull 48:879-881 https://doi.org/10.1248/cpb.48.879
  27. Park WC, Lee ST (1989) A palynotaxonomic study of the Korean Araliaceae. Kor J Pla Tax 19:103-121 https://doi.org/10.11110/kjpt.1989.19.2.103
  28. Plunkett G, Soltis D, Soltis P (1997) Clarification of the relationship between Apiaceae and Araliaceae based on matK and rbcL sequence data. Am J Bot 84:565-565 https://doi.org/10.2307/2446032
  29. Plunkett GM, II PPL, Frodin DG, Wen J (2005) Phylogeny and geography of Schefflera: pervasive polyphyly in the largest genus of Araliaceae. Ann Mo Bot Gard 92:202-224
  30. Plunkett GM, Wen J, Lowry II PP (2004) Intrafamilial classifications and characters in Araliaceae: Insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL-trnF) sequence data. Plant Syst Evol 245:1-39
  31. Plunkett GM, Soltis DE, Soltis PS (1996) Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. Am J Bot 83:499-515 https://doi.org/10.2307/2446219
  32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739 https://doi.org/10.1093/molbev/msr121
  33. Umeyama A, Shoji N, Takei M, Endo K, Arihara S (1992) Ciwujianosides D1 and C1: Powerful inhibitors of histamine release induced by anti-immunoglobulin E from rat peritoneal mast cells. J Pharm Sci 81:661-662 https://doi.org/10.1002/jps.2600810714
  34. Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ (2001) The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst Bot 26:144-167
  35. Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6:167-177 https://doi.org/10.1006/mpev.1996.0069