참고문헌
- Chiang, R. H., Goes, P., and Stohr, E. A. (2012), Business intelligence and analytics education, and program development : A unique opportunity for the information systems discipline, ACM Transactions on Management Information Systems(TMIS), 3(3), 12.
- Chiang, R. M., Kauffman, R. J., and Kwon, Y. (2014), Understanding the paradigm shift to computational social science in the presence of big data, Decision Support Systems, 63, 67-80. https://doi.org/10.1016/j.dss.2013.08.008
- Chin, W. W. (1998), The partial least squares approach to structural equation modeling, Modern Methods for Business Research, 295(2), 295-336.
- Cho, S. G., Cho, J., and Kim, S. B. (2015), Discovering meaningful trends in the inaugural addresses of United States presidents via text mining, Journal of the Korean Institute of Industrial Engineers, 41(5), 453-460. https://doi.org/10.7232/JKIIE.2015.41.5.453
- Cho, W.-S. (2013), A study on the education and training methods of Data scientist, Science and Technology Policy, 23(3), 44-55.
- Cohen, J. (1977), Statistical power analysis for the behavioral sciences, Lawrence Erlbaum Associates, Inc.
- Conway, D. (2010), The data science venn diagram, Dataists, Retrieved February, 9, 2012 (http://drewconway.com/zia/2013/3/26/the-datascience-venn-diagram).
- Davenport and Thomas, H. (2012), The human side of big data and Highperformance analytics, International Institute for Analytics (http://www.ndm.net/datawarehouse/pdf/Research_Human_Side_of_Big_Data_and_High_Performance_Analytics.pdf).
- Dhar, V. (2013), Data science and prediction, Communications of the ACM, 56(12), 64-73. https://doi.org/10.1145/2500499
- Dino, M. J. S. and de Guzman, A. B. (2015), Using partial least squares (PLS) in predicting behavioral intention for telehealth use among filipino elderly, Educational Gerontology, 41(1), 53-68. https://doi.org/10.1080/03601277.2014.917236
- Dinter, B., Douglas, D., Chiang, R. H., Mari, F., Ram, S., and Schoder, D. (2014), Big data panel at SIGDSS Pre-ICIS 2013 : A Swiss-army knife? the profile of a data scientist, Reshaping Society through Analytics, Collaboration, and Decision Support : Role of Business Intelligence and Social Media, 18, 7.
- Fenn, J. and LeHong, H. (2011), Hype cycle for emerging technologies, Gartner.
- Hair, J. F., Sarstedt, M., Pieper, T. M., and Ringle, C. M. (2012), The use of partial least squares structural equation modeling in strategic management research : a review of past practices and recommendations for future applications, Long Range Planning, 45(5), 320-340. https://doi.org/10.1016/j.lrp.2012.09.008
- Hair Jr, J. F., Hult, G. T. M., Ringle, C., and Sarstedt, M. (2013), A primer on partial least squares structural equation modeling (PLSSEM), Sage Publications.
- Hollis, C. (2011), IDC digital universe study : big data is here, now what.
- Jung, H. and Song, S.-K. (2012), Strategy for cultivating talent in the world of big data, Journal of Internet Computing and Services, 13(3), 45-50.
- Kart, L., Heudecker, N., and Buytendijk, F. (2013), Survey analysis : big data adoption in 2013 shows substance behind the hype, Gartner Report GG0255160.
- Kim, M. and Koo, P. (2013), A study on big data based investment strategy using internet search trends, Journal of the Korean Operations Research and Management Science Society, 38(4), 53-63. https://doi.org/10.7737/JKORMS.2013.38.4.053
- Kim, S. W., Kim, G. G., and Yoon, B. K. (2014), A study on a way to utilize big data analytics in the defense area, Journal of the Korean Operations Research and Management Science Society, 39(2), 1-20.
- Laney, D. and Kartpaper, L. (2012), Emerging role of the data scientist and the art of data science, Gartner Inc, Stamford.
- LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., and Kruschwitz, N. (2013), Big data, analytics and the path from insights to value, MIT Sloan Management Review, 21, 20-32.
- Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., and Roxburgh, C. (2011), Big data : The next frontier for innovation, competition, and productivity, McKinsey Global Institute.
- Martinez, M. G. and Walton, B. (2014), The wisdom of crowds : The potential of online communities as a tool for data analysis, Technovation, 34(4), 203-214. https://doi.org/10.1016/j.technovation.2014.01.011
- Nomura Research Institute (2012), The era of big data, IT Solutions Frontier.
- Nunnally, J. C. and Bernstein, I. H. (1994), Psychometric theory, New York : McGraw-Hill.
- Pantai, K. L. (2012), PLS path model for testing the moderating effects in the relationships among formative IS usage variables of academic digital libraries, Australian Journal of Basic and Applied Sciences, 6(7), 365-374.
- Patil, D. J. (2011), Building data science teams, O'Reilly Media, Inc.
- Patil, D. J. and Davenport, T. H. (2012), Data scientist, Harvard Business Review, 90, 70-76.
- Rahul, D. (2012), Data/Web Analyst vs. Data Scientist (http://blogs.splunk.com/2012/05/16/analytics-staffing-for-big-data/).
- Rauser, J. (2011), What is data scientist? (http://www.forbes.com/sites/danwoods/2011/10/07/amazons-john-rauser-on-what-is-a-data-scientist/).
- Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., and Lauro, C. (2005), PLS path modeling, Computational statistics and data analysis, 48(1), 159-205. https://doi.org/10.1016/j.csda.2004.03.005
- Thorp, J. (2003), The information paradox : realizing the business benefits of information technology, McGraw-Hill Ryerson.
- Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003), User acceptance of information technology : Toward a unified view, MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
- Vidgen, R. (2014), Creating business value from big data and business analytics : organizational, managerial and human resource implications (http://www.nemode.ac.uk/wp-content/uploads/2014/07/Vidgen-2014-NEMODE-big-data-scientist-report-final.pdf).
- Wamba, S. F., Akter, S., Edwards, A., Chopin, G., and Gnanzou, D. (2015), How 'big data' can make big impact : Findings from a systematic review and a longitudinal case study, International Journal of Production Economics, 165, 234-246. https://doi.org/10.1016/j.ijpe.2014.12.031
- Will Cukierski (2015), Improved Kaggle Rankings (http://blog.kaggle.com/2015/05/13/improved-kaggle-rankings/).