DOI QR코드

DOI QR Code

Synthesis of Propylene Carbonate over Metal containing Ionic Liquid Catalysts

금속 함유 이온성 액체 촉매상에서의 프로필렌 카보네이트의 합성

  • Moon, Ye-Ji (Chemical Industry Development Center, Korea Research Institute of Chemical Technology) ;
  • Ji, Dahye (Chemical Industry Development Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Dong-Woo (Chemical Industry Development Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Hyeon-Gook (Chemical Industry Development Center, Korea Research Institute of Chemical Technology) ;
  • Cho, Deug-Hee (Chemical Industry Development Center, Korea Research Institute of Chemical Technology)
  • 문예지 (화학산업고도화센터 한국화학연구원) ;
  • 지다혜 (화학산업고도화센터 한국화학연구원) ;
  • 김동우 (화학산업고도화센터 한국화학연구원) ;
  • 김현국 (화학산업고도화센터 한국화학연구원) ;
  • 조득희 (화학산업고도화센터 한국화학연구원)
  • Received : 2015.11.30
  • Accepted : 2015.12.29
  • Published : 2016.04.10

Abstract

In this study, three different metal-containing ionic liquid catalysts were prepared by metal insertion and characterized by various physicochemical analytic methods. The catalytic performance of the metal containing ionic liquids in the cycloaddition of $CO_2$ with propylene oxide (PO) to produce propylene carbonate (PC) was investigated under the solvent free condition. The order of approximate rate constants ($K_{app}$) for the metal containing ionic liquid catalysts was $(MeIm)_2ZnCl_2$, > $(MeIm)_2FeCl_2$ > $(MeIm)_2CuCl_2$. These results are in accord with the experimentally obtained activity order of the different metal containing ionic liquid catalysts.

본 연구에서는 세 가지 형태의 금속을 함유한 이온성 액체 촉매를 제조하고, 다양한 물리화학적 분석법으로 제조된 촉매의 특성분석을 실시하였다. 프로필렌 옥사이드(PO)와 이산화탄소의 부가반응을 통한 프로필렌 카보네이트(PC)의 합성반응에서 세 가지 촉매의 반응활성을 확인하였고 속도론적 연구를 통해 촉매들의 반응성 차이를 비교하였다. 세가지 금속이 다른 촉매에 대한 유사 반응속도 상수($K_{app}$)는 $(MeIm)_2ZnCl_2$, > $(MeIm)_2FeCl_2$ > $(MeIm)_2CuCl_2$의 순서이며, 이 것은 세 가지 촉매의 반응성이 $(MeIm)_2ZnCl_2$ > $(MeIm)_2FeCl_2$ > $(MeIm)_2CuCl_2$의 순서로 실험결과와 잘 일치하였다.

Keywords

References

  1. U. Romano, Dimethyl Carbonate and its Production Technology, Chim. Ind., 75, 303-306 (1993).
  2. A. -A. G. Shaikh and S. Sivaram, Organic Carbonates, Chem. Rev., 96(3), 951-976 (1996). https://doi.org/10.1021/cr950067i
  3. K. Weissermel and H. J. Arpe, Industral Organic Chemestry, 3rd ed., Wiley-VCH, New York (1997).
  4. N. Kihara, N. Hara, and T. Endo, Catalytic Activity of Various Salts in the Reaction of 2,3-Epoxypropyl Phenyl Ether and CarbonDioxide under Atmospheric Pressure, J. Org. Chem., 58(23), 6198-6202 (1993). https://doi.org/10.1021/jo00075a011
  5. T. Yano, H. Matsui, T. Koike, H. Ishiguro, H. Rujihara, M. Yoshihara, and T. Maeshima, Magnesium Oxide-Catalyzed Reaction of Carbon Dioxide with an Epoxide with Retention of Stereochemistry, Chem. Commun., 12, 1129-1130 (1997).
  6. K. Yamaguchi, K. T. Yoshida, H. Yoshida, and K. Kaneda, Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides, J. Am. Chem. Soc., 121(18), 4526-4527 (1999). https://doi.org/10.1021/ja9902165
  7. R. L. Paddock and S. T. Nguyen, Chemical $CO_2$ Fixation: Cr(III) Salen Complexes as Highly Efficient Catalysts for the Coupling of $CO_2$ and Epoxides, J. Am. Chem. Soc., 123(46), 11498-11499 (2001). https://doi.org/10.1021/ja0164677
  8. Y. M. Shen, W. L. Duan, and M. Shi, Chemical Fixation of Carbon Dioxide Catalyzed by Binaphthyldiamino Zn, Cu, and Co Salen-Type Complexes, J. Org. Chem., 68(4), 1559-1562 (2003). https://doi.org/10.1021/jo020191j
  9. H. S. Kim, J. J. Kim, B. G. Lee, O. S. Jung, H. G. Jang, and S. O. Kang, Isolation of a Pyridinium Alkoxy Ion Bridged Dimeric Zinc Complex for the Coupling Reactions of $CO_2$ and Epoxides, Angew. Chem. Int. Ed. Engl., 39(22), 4096-4098 (2000). https://doi.org/10.1002/1521-3773(20001117)39:22<4096::AID-ANIE4096>3.0.CO;2-9
  10. F. W. Li, C. G. Xia, L. W. Xu, W. Sun, and G. X. Chen, A Novel and Effective Ni Complex Catalyst System for the Coupling Reactions of Carbon Dioxide and Epoxides, Chem. Commun., 16, 2042-2043 (2003).
  11. T. Aida and S. Inoue, Activation of Carbon Dioxide with Aluminum Porphyrin and Reaction with Epoxide. Studies on (tetraphenylporphinato) Aluminum Alkoxide having a Long Oxyalkylene Chain as the Alkoxide Group, J. Am. Chem. Soc., 105(5), 1304-1309 (1983). https://doi.org/10.1021/ja00343a038
  12. R. Sheldon, Catalytic Reactions in Ionic Liquids, Chem. Commun., 23, 2399-2407 (2001).
  13. D.-B. Zhao, M. Wu, Y. Kou, and E.-Z. Min, Ionic Liquids: Applications in Catalysis, Catal.. Today, 74, 157-189 (2002). https://doi.org/10.1016/S0920-5861(01)00541-7
  14. P. Wasserscheid and W. Keim, Ionic Liquids - New "Solutions" for Transition Metal Catalysis, Angew. Chem. Int. Ed., 39(21), 3772-3789 (2000). https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  15. D. Jairton, F. D. S. Roberto, and A. Z. S. Paulo, Ionic Liquid (molten salt) Phase Organometallic Catalysis, Chem. Rev., 102(10), 3667-3692 (2002). https://doi.org/10.1021/cr010338r
  16. K. N. Marsh, A. Deev, A. C. T. Wu, E. Tran, and A. Klamt, Room Temperature Ionic Liquids as Replacements for Conventional Solvents - a Review, Korean J. Chem. Eng., 19(3), 357-362 (2002). https://doi.org/10.1007/BF02697140
  17. C. E. Song, W. H. Shim, E. J. Roh, and J. H. Choi, Scandium (III) Triflate Immobilized in Ionic Liquids: a Novel and Recyclable Catalytic System for Friedel-Crafts Alkylation of Aromatic Compounds with Alkenes, Chem. Commun., 17, 1695-1696 (2000).
  18. D. W. Kim and D. W. Park, Organic-Inorganic Hyvrids of Imidazole Complexes of Zinc (II) for Catalysts in the Glycerolysis of Urea, J. Nanosci. Nanotechnol., 14(6), 4632-4638 (2014). https://doi.org/10.1166/jnn.2014.8237
  19. A. Chowdhury and S. T. Thynell, Confined rapid thermolysis/FTIR/ToF studies of imidaolium-based ionic liquids, Thermochim. Acta., 443, 159-172 (2006). https://doi.org/10.1016/j.tca.2006.01.006
  20. R. Roshan, Y. S. Hwang, R. Roshan, S. H. Ahn, A. C. Kathalikkattil, and D. W. Park, A novel approach of utilizing quaternized chitosan as a catalyst for the eco-friendly cycloaddition of epoxides with $CO_2$, Catal. Sci. Technol., 2, 1674-1680 (2012). https://doi.org/10.1039/c2cy20137b
  21. A. C. Kathalikkattil, J. Tharun, R. Roshan, H. G. Soek, and D. W. Park, Efficient route for oxazolidinone synthesis using heterogeneous biopolymer catalysts from unactivated alkyl aziridine and $CO_2$ under mild conditions, Appl. Catal. A. Gen., 447, 107-114 (2012).
  22. N. Vallapa, O. Wiarachai, N. Thongchul, J. Pan, V. Tangpasuthadol, S. Kiatkamjornwong, and V. P. Hoven, Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization, Carbohydr. Polym., 83, 868-8875 (2011). https://doi.org/10.1016/j.carbpol.2010.08.075
  23. I. Niedermaier, C. Kolbeck, N. Taccardi, P. S. Schulz, J. Li, T. Drewello, P. Wasserscheid, H. P. Steinruck, and F. Maier, Organic Reactions in Ionic Liquids Studied by in Situ XPS, Chem. Phys. Chem., 13, 1725-1735 (2012). https://doi.org/10.1002/cphc.201100965
  24. D. W. Park, B. S. Yu, E. S. Jeong, I. Kim, M. I. Kim, K. J. Oh, and S. W. Park, Comparative studies on the performance of immobilized quaternary ammonium salt catalysts for the addition of carbon dioxide to glycidyl methacrylate, Catal. Today, 98, 499-504 (2004). https://doi.org/10.1016/j.cattod.2004.09.003

Cited by

  1. 상업적으로 프로필렌카보네이트를 제조하기 위한 공정 조건 연구 vol.29, pp.1, 2020, https://doi.org/10.5855/energy.2020.29.1.058