참고문헌
- H. N. Agiza, E. M. Elabbasy, H. EL-Metwally and A. A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Analysis:RWA, 10(2009), 116-129. https://doi.org/10.1016/j.nonrwa.2007.08.029
- R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics:ratio-dependence, J. Theor. Biol., 139(1989), 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
- J. R. Beddington, Mutual interference between parasites or predator and its effect on searching effciency, J. Animal Ecol., 44(1975), 331-340. https://doi.org/10.2307/3866
- J. Chen and S. Yu, Permance for a discrete ratio-dependent predator-prey system with Holling type III functional response and feedback controls, Discrete Dynamics in Nature and Society, Volume 2013, Article ID 326848, 6pages.
- G. Chen, Z. Teng and Z. Hu, Analysis of stability for a discrete ratio-dependent predator-prey system, Indian J. Pure Appl. Math., 42(1)(2011), 1-26. https://doi.org/10.1007/s13226-011-0001-0
- C. Cosner, D. L. Deangelis, J. S. Ault, and D. B. Olson, Effects of spatial grouing on the functional response of predators, Theoretical Population Biology, 56(1)(1999), 65-75. https://doi.org/10.1006/tpbi.1999.1414
- M. Danca, S. Codreanu and B. Bako, Detailed analysis of a nonlinear prey-predator model, J. Biol. Phys., 23(1997), 11-20. https://doi.org/10.1023/A:1004918920121
- D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for trophic interaction, Ecology, 56(1975), 881-892. https://doi.org/10.2307/1936298
- M. Fan and Y. Kuang, Dynamics of a nonautonomous predator-preysy stem with the Beddington-DeAngelis functional response, J. of Math. Anal. and Appl., 295(2004), 15-39. https://doi.org/10.1016/j.jmaa.2004.02.038
- T.-W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, J. of Math. Anal. and Appl., 281(2003), 395-401. https://doi.org/10.1016/S0022-247X(02)00395-5
- B. Liu, Y. Zhang and L. Chen, Dynamic complexities in a Lotka-Volterra predator-prey model concerning impulsive control strategy, Int. J. of Bifur. and Chaos, 15(2)(2005), 517-531. https://doi.org/10.1142/S0218127405012338
- X. Liu and D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons and Fractals, 32(2007), 80-94. https://doi.org/10.1016/j.chaos.2005.10.081
- X. Liu and Y. Xing, Bifurcation of a ratio-dependent Holling-Tanner system with refuge and constant havesting, Abstract and Applied Analysis, 2013(2013), Article ID 478315, 1-10.
- S. Ruan and D. Xiao, Golbal analysis in a predator-prey sytem with non-monotonic functional response, SIAM J. Appl. Math., 61(4)(2001), 1445-1472. https://doi.org/10.1137/S0036139999361896
- E. Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59(5)(1999), 1867-1878. https://doi.org/10.1137/S0036139997318457
- G. T. Skalsk and J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II mode, Ecology, 82(2001), 3083-3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
- W. Wang, Q.-X. Liu and Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system, Physical Review E, 75(2007), 051913(9). https://doi.org/10.1103/PhysRevE.75.051913
- T. Wu, Dynamic Behaviors of a discrete two species predator-prey system incorpora-tiong harvesting, Discrete Dynamics in Nature and Society, Volume 2012, Article ID 429076, 12pages.
- S. Zhang and L. Chen, A study of predator-prey models with the Beddington-DeAngelis functional response and impulsive effect, Chaos, Solitons and Fractals, 27(2006), 237-248. https://doi.org/10.1016/j.chaos.2005.03.039