DOI QR코드

DOI QR Code

Dynamical Behaviors of a Discrete Predator-Prey System with Beddington-DeAngelis Functional Response

  • Choi, Yoon-Ho (School of Electrical and Computer Engineering, Pusan National University) ;
  • Baek, Hunki (Department of Mathematics Education, Catholic University of Daegu)
  • Received : 2016.01.27
  • Accepted : 2016.02.05
  • Published : 2016.03.23

Abstract

In this paper, we consider a discrete predator-prey system obtained from a continuous Beddington-DeAngelis type predator-prey system by using the method in [9]. In order to investigate dynamical behaviors of this discrete system, we find out all equilibrium points of the system and study their stability by using eigenvalues of a Jacobian matrix for each equilibrium points. In addition, we illustrate some numerical examples in order to substantiate theoretical results.

Keywords

References

  1. H. N. Agiza, E. M. Elabbasy, H. EL-Metwally and A. A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Analysis:RWA, 10(2009), 116-129. https://doi.org/10.1016/j.nonrwa.2007.08.029
  2. R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics:ratio-dependence, J. Theor. Biol., 139(1989), 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
  3. J. R. Beddington, Mutual interference between parasites or predator and its effect on searching effciency, J. Animal Ecol., 44(1975), 331-340. https://doi.org/10.2307/3866
  4. J. Chen and S. Yu, Permance for a discrete ratio-dependent predator-prey system with Holling type III functional response and feedback controls, Discrete Dynamics in Nature and Society, Volume 2013, Article ID 326848, 6pages.
  5. G. Chen, Z. Teng and Z. Hu, Analysis of stability for a discrete ratio-dependent predator-prey system, Indian J. Pure Appl. Math., 42(1)(2011), 1-26. https://doi.org/10.1007/s13226-011-0001-0
  6. C. Cosner, D. L. Deangelis, J. S. Ault, and D. B. Olson, Effects of spatial grouing on the functional response of predators, Theoretical Population Biology, 56(1)(1999), 65-75. https://doi.org/10.1006/tpbi.1999.1414
  7. M. Danca, S. Codreanu and B. Bako, Detailed analysis of a nonlinear prey-predator model, J. Biol. Phys., 23(1997), 11-20. https://doi.org/10.1023/A:1004918920121
  8. D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for trophic interaction, Ecology, 56(1975), 881-892. https://doi.org/10.2307/1936298
  9. M. Fan and Y. Kuang, Dynamics of a nonautonomous predator-preysy stem with the Beddington-DeAngelis functional response, J. of Math. Anal. and Appl., 295(2004), 15-39. https://doi.org/10.1016/j.jmaa.2004.02.038
  10. T.-W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, J. of Math. Anal. and Appl., 281(2003), 395-401. https://doi.org/10.1016/S0022-247X(02)00395-5
  11. B. Liu, Y. Zhang and L. Chen, Dynamic complexities in a Lotka-Volterra predator-prey model concerning impulsive control strategy, Int. J. of Bifur. and Chaos, 15(2)(2005), 517-531. https://doi.org/10.1142/S0218127405012338
  12. X. Liu and D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons and Fractals, 32(2007), 80-94. https://doi.org/10.1016/j.chaos.2005.10.081
  13. X. Liu and Y. Xing, Bifurcation of a ratio-dependent Holling-Tanner system with refuge and constant havesting, Abstract and Applied Analysis, 2013(2013), Article ID 478315, 1-10.
  14. S. Ruan and D. Xiao, Golbal analysis in a predator-prey sytem with non-monotonic functional response, SIAM J. Appl. Math., 61(4)(2001), 1445-1472. https://doi.org/10.1137/S0036139999361896
  15. E. Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59(5)(1999), 1867-1878. https://doi.org/10.1137/S0036139997318457
  16. G. T. Skalsk and J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II mode, Ecology, 82(2001), 3083-3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
  17. W. Wang, Q.-X. Liu and Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system, Physical Review E, 75(2007), 051913(9). https://doi.org/10.1103/PhysRevE.75.051913
  18. T. Wu, Dynamic Behaviors of a discrete two species predator-prey system incorpora-tiong harvesting, Discrete Dynamics in Nature and Society, Volume 2012, Article ID 429076, 12pages.
  19. S. Zhang and L. Chen, A study of predator-prey models with the Beddington-DeAngelis functional response and impulsive effect, Chaos, Solitons and Fractals, 27(2006), 237-248. https://doi.org/10.1016/j.chaos.2005.03.039