DOI QR코드

DOI QR Code

대용량 포인트 클라우드 기반 파이프 형상 역설계 자동화 방법 연구

Large Point Cloud-based Pipe Shape Reverse Engineering Automation Method

  • 투고 : 2015.08.18
  • 심사 : 2016.03.03
  • 발행 : 2016.03.31

초록

최근 신규 시설물 건설이 줄어들고 기존 시설물에 대한 확장공사 및 유지보수가 시설물 관리에 있어서 갈수록 큰 비중을 차지하고 있다. 이런 배경에서, 건축에서 가장 큰 관리 및 운영비용을 차지하고 있는 MEP(Mechanical Electrical and Plumbing) 설비에 대한 역설계 연구 필요성이 높아지고 있다. 연구의 목적은 대용량 MEP 포인트 클라우드의 파이프 배관 형상에 대한 역설계 자동화 방법을 제시하는 것이다. 이를 위해, 관련 연구를 조사하고, 대용량 포인트 클라우드를 고려한 형상 역설계 자동화 방법을 제안한다. 이를 바탕으로, 프로토타입을 개발하고, 결과를 검증하였으며, 3차원 대용량 포인트 클라우드 데이터 검색 등과 관련된 렌더링 성능을 측정하였다. 포인트 클라우드 샘플들을 준비해 검증한 결과, 제안된 방법에서 렌더링 성능 표준편차는 0.004로 차이가 적어, 대용량 데이터 처리에 적합함을 알 수 있다.

Recently, the facility extension construction and maintenance market portion has increased instead of decreased the newly facility construction. In this context, it is important to examine the reverse engineering of MEP (Mechanical Electrical and Plumbing) facilities, which have the high operation and management cost in the architecture domains. The purpose of this study was to suggest the Large Point Cloud-based Pipe Shape Reverse Engineering Method. To conduct the study, the related researches were surveyed and the reverse engineering automation method of the pipe shapes considering large point cloud was proposed. Based on the method, the prototype was developed and the results were validated. The proposed method is suitable for large data processing considering the validation results because the rendering performance standard deviation related to the 3D point cloud massive data searching was 0.004 seconds.

키워드

참고문헌

  1. Korea Facilities Maintenance Association, CNEWS, 2013.
  2. Ministry of Knowledge Economy, Facility Management System Development, 2008.
  3. D. S. Han, "Cultural Heritage Experience Technology Development for Cultural Property and Scenario Recovery," Korea Culture & Content Agency, 2005.
  4. D. H. Lee, Giga Point Cloud-based Reverse Design Module Development, INUS technology, 2009.
  5. T. Rabbani, F. A. Heuvel and G. Vosselman, “Segmentation of point clouds using smoothness constraint,” Remote Sensing and Spatial Information Sciences, Vol. 36, No. 5, pp. 248-253, 2006.
  6. Y. J. Liu, J. B. Zhang, J. C. Hou, J. C. Ren and W. Q. Tang, "Cylinder Detection in Large-Scale Point Cloud of Pipeline Plant," IEEE Transactions on Visualization and Computer Graphics, Vol. 19, No. 10, pp. 1077-2626, 2013. DOI: http://dx.doi.org/10.1109/TVCG.2013.74
  7. J. H. Lee, H. J. Son, C. M. Kim and C. W. Kim, "Skeleton-based 3D reconstruction of as-built pipelines from laser-scan data," Automation in Construction, Vol. 35, pp. 199-207, 2013. DOI: http://dx.doi.org/10.1016/j.autcon.2013.05.009
  8. O. K. Au, C. L. Tai, H. K. Chu, D. C. Or and T. Y. Lee, "Skeleton Extraction by Mesh Contraction," ACM Transactions on Graphics, Vol. 27, No. 3, 2008. DOI: http://dx.doi.org/10.1145/1360612.1360643
  9. F. Hu, Y. Zhao, W. Wang and X. Huang, "Discrete Point Cloud Filtering And Searching Based On VGSO Algorithm," European Council for Modeling and Simulation, pp. 850-856, 2013. DOI: http://dx.doi.org/10.7148/2013-0850
  10. J. S. Lee, Y. S. Lee, J. H. Kim and J. J. Kim, "A study about developing the BIM-based decision making support system at pre-design stage," Proc. of 2008 Architectural Institute of Korea, Vol. 28, No. 1, pp. 637-640, 2008.
  11. C. Fu, G. Aouad, A. Lee, A. Mashall-Ponting and S. Wu, "IFC model viewer to support nD model application," Automation in Construction, Vol 15, No 2, pp. 178-185, 2006. DOI: http://dx.doi.org/10.1016/j.autcon.2005.04.002