DOI QR코드

DOI QR Code

수중 채널환경에서 FMT-OFDM 시스템의 성능 향상을 위한 연구

Performance Improvement of FMT-OFDM System in Underwater Channel Environment

  • Kim, Min-sang (Department of Oceanic IT Convergency Technology Research Center, Hoseo University) ;
  • Ko, Hak-lim (Department of Information and Communication Engineering, Hoseo University) ;
  • Kim, Seung-geun (Korea Research Institute of Ships and Ocean Eng.(KRISO)) ;
  • Cho, Dea-young (San Eng.) ;
  • Im, Tae-ho (Department of Oceanic IT Convergency Technology Research Center, Hoseo University)
  • 투고 : 2015.11.05
  • 심사 : 2016.03.23
  • 발행 : 2016.03.31

초록

최근 수중통신의 성능 향상을 위해 육상의 이동통신 기술 중 하나인 다중반송파 방식을 수중채널 환경에 적용하기 위한 연구 사례가 증가 하고 있으며, 본 연구에서는 기존 다중반송파 방식에 비하여 우수한 통신 성능을 갖는 시스템 설계를 위해 자원 확산에 의한 주파수 다이버시티 효과와 반복(Repetition)효과를 갖는 RS(Resource Spreading) FMT-OFDM 시스템을 제안한다. 본 연구에서는 실해역에서 측정한 데이터를 기반으로 채널을 모델링하고 시스템 파라미터를 설정한 후 RS FMT-OFDM 시스템과 기존 FMT-OFDM 시스템의 성능을 시뮬레이션을 통해 검증 하였다. 성능검증 결과 기존의 FMT-OFDM 시스템에 비하여 BER $10^{-3}$ 기준 약 12dB정도 통신성능의 향상이 있었으며, 자원 확산률이 증가함에 따라 통신 성능 향상이 있음을 확인할 수 있었다.

Recently, There are increasing number of studies that apply multi-carrier method, a land mobile communication method, to underwater channel environment in order to enhance the performance of underwater communication. Therefore, in this paper, in order to design a new system with improved communication performance compared to the multi-carrier method in underwater communication, we present that the RS(Resource Spreading) FMT-OFDM system has a diversity and repetition effect from resource spreading. Moreover, we verify the performance of RS FMT-OFDM system and existing FMT-OFDM system through simulations after modeling communication channels and setting the system parameter based on the data measured from the real sea. Our result indicate that, compared to the existing FMT-OFDM system, there has been an improvement in communication performance by 12dB based on BER $10^{-3}$ we also discovered that communication performance improves as the resource spreading rate increases.

키워드

참고문헌

  1. E. M. Sozer, M. Stojanovic, and J. G. Proakis. "Underwater acoustic networks," IEEE J. Oceanic Eng., vol. 25, no. 1, pp. 72-83, Jan. 2000. https://doi.org/10.1109/48.820738
  2. A. C. Singer, J. K. Nelson and S. S. Kozat "Signal processing for underwater acoustic communications," IEEE Commun. Mag., vol. 47, no. 1, pp. 90-96, 2009. https://doi.org/10.1109/MCOM.2009.4752683
  3. M. Stojanovic and J. Presig, "Underwater acoustic communication channels: Propagation models and statistical characterization," IEEE Commun. Mag., vol. 47, no. 1, pp. 84-89, Jan. 2009.
  4. Y. S. Cho, J. K. Kim, and W. Y. Yang, MIMO-OFDM wireless communications with matlab, Hongrung publishing company, pp. 179-182, 2012.
  5. G. Cherubini, E. Eleftheriou, and S. Olcer, "Filtered multitone modulation for very high-speed digital subscriber lines," IEEE J. Select. Areas Commun., vol. 20, no. 5, pp. 1016-1028, Jun. 2002. https://doi.org/10.1109/JSAC.2002.1007382
  6. K. C. Cho, "Performance analysis of the pre-equalizer system for the OFDM system," J. KICS, vol. 39B, no. 12, pp. 864-869, Dec. 2014. https://doi.org/10.7840/kics.2014.39B.12.864
  7. M. S. Kim, D. Y. Cho, T. H. Im, "A study on the multi-carrier system for throughput enhancement in underwater channel environments," J. KICS, vol. 40, no. 6, pp. 1194-1199, Jun. 2015.
  8. M. S. Kim, D. Y. Cho, and H. L. Ko, "Analysis on the correlation coefficient for the diversity technique combined with beamforming using measurement data in underwater channel environments," J. KICS, vol. no. 37A, pp. 1023-1030, Dec. 2012.