References
- Al-Sultan, K. S. and Bozer, Y. A. (1998), Network configuration and machine layout in fixed-path material handling systems, Annals of Operations Research, 76, 21-54. https://doi.org/10.1023/A:1018944520967
- Drezner, Z. and Wesolowsky, G. O. (2003), Network design: selection and design of links and facility location, Transportation Research Part A, 37(3), 241-256. https://doi.org/10.1016/S0965-8564(02)00014-9
- Fu, L., Sun, D., and Rilett, L. R. (2006), Heuristic shortest path algorithms for transportation applications: state of the art, Computers and Operations Research, 33(11), 3324-3343. https://doi.org/10.1016/j.cor.2005.03.027
- Gross, D. and Harris, C. (1985), Fundamentals of Queuing Theory: Second Edition, John Wiley and Sons, New York.
- Gallo, M., D'Acierno, L., and Montella, B. (2010), A meta-heuristic approach for solving the urban network design problem, European Journal of Operational Research, 201(1), 144-157. https://doi.org/10.1016/j.ejor.2009.02.026
- Guan, X., Dai, X., and Li, J. (2011), Revised electromagnetism-like mechanism for flow path design of unidirectional AGV systems, International Journal of Production Research, 49(2), 401-429. https://doi.org/10.1080/00207540903490155
- Herrmann, J. W., Ioannou, G., and Minis., I. (1995), Design of material flow networks in manufacturing facilities, Journal of Manufacturing Systems, 14(4), 277-289. https://doi.org/10.1016/0278-6125(95)98880-F
- Jeon, S. M., Kim, K. H., and Kopfer, H. (2011), Routing automated guided transporters in container terminals through the Q-learning technique, Logistics Research, 3(1), 19-27. https://doi.org/10.1007/s12159-010-0042-5
- Kaspi, M. and Tanchoco, J. M. A. (1990), Optimal flow path design of unidirectional AGV systems, International Journal of Production Research, 28(6), 1023-1030. https://doi.org/10.1080/00207549008942772
- Kaspi, M., Kesselman, U., and Tanchoco, J. M. A. (2002), Optimal solution for the flow path design problem of a balanced unidirectional AGV system, International Journal of Production Research, 40(2), 389-401. https://doi.org/10.1080/00207540110079761
- Kim, K. H., Phan, M.-H. T., and Woo, Y. J. (2012), New conceptual handling systems in container terminals, Industrial Engineering and Management Systems, 11(4), 299-309. https://doi.org/10.7232/iems.2012.11.4.299
- Lim, J. K., Lim, J. M., Yoshimoto, K., Kim, K. H., and Takahashi, T. (2002a), A construction algorithm for designing guide paths of automated guided vehicle systems, International Journal of Production Research, 40(15), 3981-3994. https://doi.org/10.1080/00207540210137558
- Lim, J. K., Lim, J. M., Yoshimoto, K., Kim, K. H., and Takahashi, T. (2002b), Designing guide-path networks for automated guided vehicle system by using the Q-learning technique, Computers and Industrial Engineering, 44(1), 1-17. https://doi.org/10.1016/S0360-8352(02)00128-6
- Gaskins, R. J. and Tanchoco, J. M. A. (1987), Flow path design for automated guided vehicle systems, International Journal of Production Research, 25(5), 667-676. https://doi.org/10.1080/00207548708919869
- Miandoabchi, E. and Farahani, R. Z. (2011), Optimizing reserve capacity of urban road networks in a discrete network design problem, Advances in Engineering Software, 42(12), 1041-1050. https://doi.org/10.1016/j.advengsoft.2011.07.005
- Miandoabchi, E., Farahani, R. Z., Dullaert, W., and Szeto, W. Y. (2012a), Hybrid evolutionary metaheuristics for concurrent multi-objective design of urban road and public transit networks, Networks and Spatial Economics, 12(3), 441-480. https://doi.org/10.1007/s11067-011-9163-x
- Miandoabchi, E., Farahani, R. Z., and Szeto, W. Y. (2012b), Bi-objective bimodal urban road network design using hybrid metaheuristics, Central European Journal of Operations Research, 20(4), 583-621. https://doi.org/10.1007/s10100-011-0189-4
- Seo, Y. and Egbelu, P. J. (1999), Integrated manufacturing planning for an AGV-based FMS, International Journal of Production Economics, 60/61, 473-478. https://doi.org/10.1016/S0925-5273(98)00185-6
- Shen, Y. C. and Lau, L. K. (1997), Planning of flow path to minimize expected waiting time for freeranging automated guided vehicle systems, IEEE International Conference on Systems, Man, and Cybernetics, 4, 3738-3743.
- Singgih, I. K. and Kim, K. H. (2015), Service network design for rail-mounted transporters, ICIC Express Letter, 9(4), 1025-1032.
- Sinriech, D. and Tanchoco, J. M. A. (1991), Intersection graph method for AGV flow path design, International Journal of Production Economics, 29(9), 1725-1732. https://doi.org/10.1080/00207549108948044
- Srinivas, M. and Patnaik, L. M. (1994), Adaptive probabilities of crossover and mutation in genetic algorithms, IEEE Transactions on Systems, Man and Cybernetics, 24(4), 656-667. https://doi.org/10.1109/21.286385
- Vosniakos, G. C. and Davies, B. J. (1989), On the path layout and operation of an AGV system serving and FMS, International Journal of Advanced Manufacturing Technology, 4, 243-262. https://doi.org/10.1007/BF02601524
- Zhang, M., Batta, R., and Nagi, R. (2009), Modeling of workflow congestion and optimization of flow routing in a manufacturing/warehouse facility, Management Science, 55(2), 267-280. https://doi.org/10.1287/mnsc.1080.0916
- Zhang, M., Batta, R., and Nagi, R. (2011), Designing manufacturing facility layouts to mitigate congestion, IIE Transactions, 43, 689-702. https://doi.org/10.1080/0740817X.2010.546386
Cited by
- Development of port service network in OBOR via capacity sharing: an idea from Zhejiang province in China vol.45, pp.1, 2018, https://doi.org/10.1080/03088839.2017.1391412
- A Remarshalling Buffer Location Model in a Rail-based Container Terminal vol.26, pp.3, 2018, https://doi.org/10.15735/kls.2018.26.3.001
- A CEGA-Based Optimization Approach for Integrated Designing of a Unidirectional Guide-Path Network and Scheduling of AGVs vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/3961409
- Joint Configuration and Scheduling Optimization of a Dual-Trolley Quay Crane and Automatic Guided Vehicles with Consideration of Vessel Stability vol.12, pp.1, 2016, https://doi.org/10.3390/su12010024
- Joint configuration and scheduling optimization of the dual trolley quay crane and AGV for automated container terminal vol.1486, pp.None, 2016, https://doi.org/10.1088/1742-6596/1486/7/072080