Ethyl Acetate Fraction from Petasites japonicus Attenuates Oxidative Stress through Regulation of Nuclear Factor E2-Related Factor-2 Signal Pathway in LLC-PK1 Cells

머위 에틸아세테이트 분획물의 LLC-PK1 세포에서의 Nrf-2 매개 항산화 효과

  • Kim, Ji Hyun (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University) ;
  • Lee, Jaemin (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Sanghyun (Department of Integrative Plant Science, Chung-Ang University) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University)
  • 김지현 (부산대학교 식품영양학과 및 김치연구소) ;
  • 이재민 (중앙대학교 식물시스템과학과) ;
  • 이상현 (중앙대학교 식물시스템과학과) ;
  • 조은주 (부산대학교 식품영양학과 및 김치연구소)
  • Received : 2015.12.11
  • Accepted : 2016.02.22
  • Published : 2016.03.31

Abstract

Antioxidant effects and nuclear factor E2-related factor-2 (Nrf-2) signal pathway of methanol extract and 4 fractions [n-hexane, methylene chloride, ethyl acetate (EtOAc), and n-butanol fractions] from Petasites japonicus were investigated. The EtOAc fraction showed highest polyphenol and flavonoid contents among other fractions. In addition, EtOAc fraction showed stronger scavenging activity against superoxide anion radical than other fractions. Furthermore, we investigated antioxidants effects of the EtOAc fraction under cellular system using $LLC-PK_1$ cells. The EtOAc fraction dose-dependently increased the antioxidant protein expressions of heme oxygenase 1 (HO-1) and thioredoxin reductase 1 (TrxR1) known to be involved in oxidative stress, through activation of Nrf-2. The treatment of EtOAc fraction ($100{\mu}g/mL$) led to the elevation of the high expression of Nrf-2-dependent factor such as HO-1 and TrxR1. These results indicated that the EtOAc fraction of P. japonicus showed high antioxidant activity by regulation of Nrf-2 signaling pathway.

Keywords

References

  1. Balaban, R. S., Nemoto, S. and Finkel T. (2005) Mitochondria, oxidants, and aging. Cell 120: 483-495. https://doi.org/10.1016/j.cell.2005.02.001
  2. Ames, B. N., Shigenaga, M. K. and Hagen, T. M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U S A 90: 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  3. Satoh, T., Enokido, Y., Kubo, T., Yamada, M. and Hatanaka, H. (1998) Oxygen toxicity induces apoptosis in neuronal cells. Cell Mol. Neurobiol. 18: 649-666. https://doi.org/10.1023/A:1020269802315
  4. Maynard, S., Schurman, S. H., Harboe, C., de Souza-Pinto, N. C. and Bohr, V. A. (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30: 2-10.
  5. Ray, P. D., Huang, B. W. and Tsuji, Y. (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24: 981-990. https://doi.org/10.1016/j.cellsig.2012.01.008
  6. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313-322. https://doi.org/10.1006/bbrc.1997.6943
  7. Koriyama, Y., Nakayama, Y., Matsugo, S. and Kato, S. (2013) Protective effect of lipoic acid against oxidative stress is mediated by Keap1/Nrf2-dependent heme oxygenase-1 induction in the RGC-5 cellline. Brain Res. 1499: 145-157. https://doi.org/10.1016/j.brainres.2012.12.041
  8. Cho, B. S., Lee, J. J., Ha, J. O. and Lee, M. Y. (2006) Physicochemical composition of Petasites japonicus S. et Z. Max. Korean J. Food Preserv. 13: 661-667.
  9. Oh, S. H., Yang, Y. H., Kwon, O. Y. and Kim, M. R. (2006) Effects of diet with added butterbur (Petasites japonicus Maxim) on the plasma lipid profiles and antioxidant index of mice. J. East Asian Soc. Dietary Life 16: 399-407.
  10. Cho, B. S., Lee, J. J. and Lee, M. Y. (2007) Effects of ethanol extracts from Petasites japonicus S. et Z. Max. on hepatic antioxidative systems in alcohol treated rats. J. Korean Soc. Food Sci. Nutr. 36: 298-304. https://doi.org/10.3746/jkfn.2007.36.3.298
  11. Lee, J. S., Yang, E. J., Yun, C. Y., Kim, D. H. and Kim, I. S. (2011) Suppressive effect of Petasites japonicus extract on ovalbumin-induced airway inflammation in an asthmatic mouse model. J. Ethnopharmacol. 133: 551-557. https://doi.org/10.1016/j.jep.2010.10.038
  12. Seo, H. S., Chung, B. H. and Cho, Y. G. (2008) The antioxidant and anticancer effects of butterbur (Petasites japonicus) extract. Korean J. Plant Res. 21: 265-269.
  13. Choi, O. B. (2002) Anti-allergic effects of Petasites japonicum. J. Korean Soc. Food Sci. Nutr. 15: 382-385.
  14. Gutfinger T. (1981) Polyphenols in olive oils. J. Am. Oil. Chem. Soc. 58: 966-967. https://doi.org/10.1007/BF02659771
  15. Moreno, M. I., Isla, M. I., Sampietro, A. R. and Vattuone, M. A. (2000) Comparison of the free radical scavenging activity of propolis from several region of Argentina. J. Enthropharmacol. 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  16. Nishikimi, N., Rao, N. A. and Yagi, K. (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygenin. Biochem. Biophys. Res. Commun. 46: 849-854. https://doi.org/10.1016/S0006-291X(72)80218-3
  17. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  18. Duval, B. and Shetty, K. (2001) The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. J. Food Biochem. 25: 361-377. https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  19. Bravo, L. (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56: 317-333.
  20. Beecher, G. R. (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J. Nutr. 133: 3248S-3254S. https://doi.org/10.1093/jn/133.10.3248S
  21. Middleton, E. J. and Kandaswami, C. (1994) Potential health promoting properties of citrus flavonoids. Food Technol. 48: 115-119.
  22. Lee, C. H., Yi, H. S., Kim, J. E., Heo, S. K., Cha, C. M., Won, C. W. and Park, S. D. (2009) Anti-oxidative and anti-inflammaroty effect of fractionated extracts of Smilacis glabrae rhizome in human umbilical vein endothelial cell. Kor. J. Herbology 24: 39-50.
  23. Kamat, J. P. (2006) Peroxynitrite: a potent oxidizing and nitrating agent. Indian J. Exp. Biol. 44: 436-447.
  24. Wang, Q., Lee, A. Y., Choi, J. M., Lee, D. G., Kim, H. Y., Lee, S. H. and Cho, E. J. (2014) In vitro radical scavenging effect and neuroprotective activity from oxidative stress of Petasites japonicus. Kor. J. Pharmacogn. 45: 147-153.
  25. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D. and Yamamoto, M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13: 76-86. https://doi.org/10.1101/gad.13.1.76
  26. Tanito, M., Agbaga, M. P. and Anderson, R. E. (2007) Upregulation of thioredoxin system via Nrf2-antioxidant responsive element pathway in adaptive-retinal neuroprotection in vivo and in vitro. Free Radic. Biol. Med. 42: 1838-1850. https://doi.org/10.1016/j.freeradbiomed.2007.03.018
  27. McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J. D. (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J. Biol. Chem. 278: 21592-21600. https://doi.org/10.1074/jbc.M300931200
  28. Maines, M. D. (1988) Heme oxygenase: function, multiplicity, regulatory mechanism, and clinical applications. FASEB J. 2: 2557-2568. https://doi.org/10.1096/fasebj.2.10.3290025
  29. Sakurai, A., Nishimoto, M., Himeno, S., Imura, N., Tsujimoto, M., Kunimoto, M. and Hara, S. (2005) Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. J. Cell. Physiol. 203: 529-537. https://doi.org/10.1002/jcp.20246
  30. Mustacich, D. and Powis, G. (2000) Thioredoxin reductase. Biochem. J. 346: 1-8. https://doi.org/10.1042/bj3460001
  31. Matsuura, H., Amano, M., Kawabata, J. and Mizutani, J. (2002) Isolation and measurement of quercetin glucosides in flower buds of Japanese butterbur (Petasites japonicus subsp. gigantea Kitam.). Biosci. Biotechnol. Biochem. 66: 1571-1575. https://doi.org/10.1271/bbb.66.1571
  32. Lee, D. G., Lee, K. H., Park, K. W., Han, C. K., Ryu, B. Y. and Cho, E. J. (2015) Isolation and identification of flavonoids with aldose reductiase inhibitory activity from Petasites japonicus. Asian J. Chem. 27: 991-994. https://doi.org/10.14233/ajchem.2015.17845
  33. Yaoita, Y. and Kikuchi, M. (1994) Petasiphenone, a phenolic compound from rhizomes of Petasites japonicus. Phytochemistry 37: 1773-1774. https://doi.org/10.1016/S0031-9422(00)89612-0
  34. Tori, M., Kawahara, M. and Sono, M. (1997) Novel epoxyeremophilanoids, eremopetasitenins A1, A2, B1, and B2, from Petasites japonicus. Tetrahedron Lett. 38: 1965-1968. https://doi.org/10.1016/S0040-4039(97)00235-9