Anticariogenic Activity from Purified Bee Venom (Apis mellifera L.) against Four Cariogenic Bacteria

구강질환 원인균에 대한 정제봉독의 항균효과

  • Han, Sang Mi (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, In Phyo (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Woo, Soon Ok (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Kyun Kyu (School of Medicine, Catholic University of Daegu) ;
  • Chang, Young Chae (School of Medicine, Catholic University of Daegu)
  • 한상미 (농촌진흥청 국립농업과학원) ;
  • 홍인표 (농촌진흥청 국립농업과학원) ;
  • 우순옥 (농촌진흥청 국립농업과학원) ;
  • 박관규 (대구가톨릭대학교 의과대학) ;
  • 장영채 (대구가톨릭대학교 의과대학)
  • Received : 2016.01.11
  • Accepted : 2016.03.03
  • Published : 2016.03.31

Abstract

The aim of the study was performed to examine the anticariogenic potential of purified bee venom (Apis mellifera L., PBV) collected using bee venom collector from cariogenic bacteria, Streptococcus mutans, Streptococcus sanguis, Porphyromonas gingivalis, and Fusobacterium nucleatum. The anticariogenic effect of purified bee venom was evaluated by agar well diffusion method, minimum inhibitory concentraion (MIC), minimum bactericidal concentration (MBC), and postantibiotic effect (PAE). The human lower gingiva epithelial cell cytotoxicity of purified bee venom was also evaluated. Purified bee venom exhibited significant inhibition of bacterial growth of S. mutans, S. sanguis, P. gingivalis, and F. nucleatum with MIC value of 0.68, 0.85, 3.49, and $2.79{\mu}g/ml$, respectively. The MBC value of purified bee venom against S. mutans, S. sanguis, P. gingivalis, and F. nucleatum was 1.34, 1.67, 8.5, and $6.8{\mu}g/ml$. Furthermore, the results of PAE values against S. mutans, S. sanguis, P. gingivalis, and F. nucleatum showed the bacterial effect with 3.3, 3.45, 2.0, and 2.0. The concentration below 1 mg/ml of purified bee venom had no cytotoxicity in the human lower gingiva epithelial cell. These results suggested that purified bee venom have great potenial as anticariogenic agents.

Keywords

References

  1. Freires, I. A., Denny, C., Benso, B., de Alencar, S. M. and Rosalen, P. L. (2015) Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: A systematic review. Molecules 20: 7329-7358. https://doi.org/10.3390/molecules20047329
  2. Kalesinskas, P., Kacergius, T., Ambrozaitis, A., Peciulienė, V. and Ericson, D. (2014) Reducing dental plaque formation and caries development. A review of current methods and implications for novel pharmaceuticals. Stomatologija 16: 44-52.
  3. Koo, H., Falsetta, M. L. and Klein, M. I. (2013) The exopolysaccharide matrix: A virulence determinant of cariogenic biofilm. J. Dent. Res. 92: 1065-1073. https://doi.org/10.1177/0022034513504218
  4. Costalonga, M. and Herzberg, M. C. (2014) The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 162: 22-38. https://doi.org/10.1016/j.imlet.2014.08.017
  5. Horst, J. A., Pieper, U., Sali, A., Zhan, L., Chopra, G., Samudrala, R. and Featherstone, J. D. (2012) Strategic protein target analysis for developing drugs to stop dental caries. Adv. Dent. Res. 24: 86-93. https://doi.org/10.1177/0022034512449837
  6. Kaur, G., Rajesh, S. and Princy, S. A. (2015) Plausible drug targets in the Streptococcus mutans Quorum sensing pathways to combat dental biofilms and associated risks. Indian J. Microbiol. 55: 349-356. https://doi.org/10.1007/s12088-015-0534-8
  7. Zhao, A., Blackburn, C., Chin, J. and Srinivasan, M. (2014) Soluble toll like receptor 2 (TLR-2) is increased in saliva of children with dental caries. BMC Oral. Health 31: 14:108.
  8. Shang, D., Liang, H., Wei, S., Yan, X., Yang, Q. and Sun, Y.. (2014) Effects of antimicrobial peptide L-K6, a temporin- 1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity. Appl. Microbiol. Biotechnol. 98: 8685-8695. https://doi.org/10.1007/s00253-014-5927-9
  9. 이보배, 하유미, 신수화, 제경모, 김순래, 최재석, 최인순 (2009) 구강질환 원인균에 대한 자몽종자추출물과 접제 유황수 함유 시약 시제품의 항균효과. 생명과학회지 19: 956-962.
  10. 김민정, 박상동, 이아람, 김경호, 장준혁, 김갑성 (2002) 쥐의 Collagen 유발 관절염의 활액에서 단백분해효소의 활성 및 유리기 손상에 미치는 봉독약침의 억제효과. 대한침구학회지 19: 161-175.
  11. Kim, H. W., Kwon, Y. B., Ham, T. W., Roh, D. H., Yoon, S. Y., Lee, H. J., Han, H. J., Yang, I. S., Beitz, A. J. and Lee, J. J. (2003) Acupoint stimulation using bee venom attenuates formalin-induced pain behavior and spinal cord fos expression in rats. J. Vet. Med. Sci. 65: 349-355. https://doi.org/10.1292/jvms.65.349
  12. Piek, T. (1986) Venoms of the hymenoptera. London, Academic Press.
  13. Habermann, E. and Reiz, K. G. (1965) On the biochemistry of bee venom pep-tides, melittin and apamin. Biochemistry 343: 192-203.
  14. Fennell, J. F., Shipman, W. H. and Cole, L. J. (1967) Antibacterial action of a bee venom fraction(melittin) against a penicillin-resistant Staphylococcus and other microorganisms. Res. Dev. Tech. Rep. 5: 1-13.
  15. Curcio-Vonlanthen, V. and Schneider, C. H., Frutig, K., Blaser, K. H. and Kalbacher, H. (1997) Molecular parameters in melittin immunogenicity. J. Pept. Sci. 3: 267-276. https://doi.org/10.1002/(SICI)1099-1387(199707)3:4<267::AID-PSC106>3.0.CO;2-7
  16. Rudenko, S. V. and Nipot, E. E. (1996) Modulation of melittin- induced hemolysis of erythocytes. Biokhimiia 61: 2116-2124.
  17. 한상미, 이광길, 여주홍, 김원태, 박관규 (2009) 국내산 봉독의 여드름 유발균 및 피부 상재균의 증식 억제 효과. 생약학회지 40: 173-177.
  18. 한상미, 이광길, 여주홍, 우순옥, 권해용 (2007) 봉독의 간이 정제 방법, 대한민국특허 10-075881.
  19. Wu, M. and Hancock, R. E. (1999) Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J. Biol. Chem. 274: 29-35 https://doi.org/10.1074/jbc.274.1.29
  20. Lowdin, E., Odenholt-Tornqvist, I., Bengtsson, S. and Cars, O. (1993) A new method to determine postantibiotic effect and effects of subinhibitory antibiotic concentrations. Antimicrob. Agents Chemother. 37: 2200-2205. https://doi.org/10.1128/AAC.37.10.2200
  21. Chung, M. J., Walker, P. A., Brown, R. W. and Hogstrand, C. (2005) ZINC-mediated gene expression offers protection against $H_2O_2$-induced cytotoxicity. Toxicol. Appl. Pharmacol. 205: 225-236. https://doi.org/10.1016/j.taap.2004.10.008