DOI QR코드

DOI QR Code

Plasma Corrosion in Oxalic Acid Anodized Coatings Depending on Tartaric Acid Content

  • Shin, Jae-Soo (Department of Materials Science and Engineering, Daejeon University) ;
  • Song, Je-Boem (Vacuum Center, Korea Research Institute of Standards and Science) ;
  • Choi, Sin-Ho (Department of Materials Science and Engineering, Daejeon University) ;
  • Kim, Jin-Tae (Vacuum Center, Korea Research Institute of Standards and Science) ;
  • Oh, Seong-Geun (Department of Chemical Engineering, Hanyang University) ;
  • Yun, Ju-Young (Vacuum Center, Korea Research Institute of Standards and Science)
  • Received : 2016.01.14
  • Accepted : 2016.01.25
  • Published : 2016.01.30

Abstract

Study investigated the optimal anodizing conditions for fabricating an oxide film that produces less contamination in a corrosive plasma environment, using oxalic acid and tartaric acid. Oxide films were produced using sulfuric acid, oxalic acid, and tartaric acid electrolyte mixtures with various mole ratios. The oxide film made by adding 0.05M tartaric acid to 0.3M oxalic acid showed higher breakdown voltage and lower leakage current. Additionally, contamination particles were reduced during plasma etching, thus demonstrates that this mixture presented optimal conditions. However, higher tartaric acid content (0.1 M, 0.15 M) led to lower breakdown voltages and higher leakage currents. Also, it resulted in more cracking during thermal shock tests as well as the generation of more contamination particles during plasma processing.

Keywords

References

  1. A. Bautista, J. A. Gonzalez, and V. Lopez, Surf. Coat. Technol. 154, 49 (2002). https://doi.org/10.1016/S0257-8972(01)01667-X
  2. W. Bensalah, K. Elleuch, M. Feki, M. Wery, and H. F. Ayedi, Surf. Coat. Technol. 201, 7855 (2007). https://doi.org/10.1016/j.surfcoat.2007.03.027
  3. H. H. Shih, and S. L. Tzou, Surf. Coat. Technol. 124, 278 (2000). https://doi.org/10.1016/S0257-8972(99)00646-5
  4. L. Domingues, J. C. S. Fernandes, M. D. C. Belo, M. G. S. Ferreira, and L.G. Rosa, Corros. Sci. 45, 149 (2003). https://doi.org/10.1016/S0010-938X(02)00082-3
  5. I. Tsangaraki-Kaplanoglou, S. Theohari, Th. Dimogerontakis, Y. M. Wang, H. H. Kuo, and S. Kia, Surf. Coat. Technol. 200, 2634 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.065
  6. I. H. Chang, D.Y. Jung, and J. S. Gook, J. Kor. Inst. Surf. Eng. 45, 5 (2012).
  7. J. B. Song, J. T. Kim, S. G. Oh, J. S. Shin, J. R. Chun, and J. Y. Yun, Sci. Adv. Mater. 7, 127 (2015). https://doi.org/10.1166/sam.2015.2091
  8. EU Patent, EP 2055 810A2, (2009).
  9. M. Garcia-Rubio, P. Ocon, M. Curioni, G. E. Thompson, P. Skeldon, A. Lavia, and I. Garcia, Corros. Sci. 52, 2219 (2010). https://doi.org/10.1016/j.corsci.2010.03.004
  10. M. Garcia-Rubio, M.P. de Lara, P. Ocon, S. Diekhoff, M. Beneke, A. Lavia, and I. Garcia, Electrochim. Acta. 54, 4789 (2009). https://doi.org/10.1016/j.electacta.2009.03.083
  11. K. M. Takahashi, and J. E. Daugherty, J. Vac. Sci. A 14, 2983 (1996). https://doi.org/10.1116/1.580257
  12. J. Ren, and Y. Zuo, Appl. Surf. Sci. 261, 193 (2012). https://doi.org/10.1016/j.apsusc.2012.07.139
  13. L. Woo, S. Kathrin, S. Martin, P. Eckhard, S. Roland, and G. Ulrich, Nature Nanotech., 3, 234 (2008). https://doi.org/10.1038/nnano.2008.54

Cited by

  1. Effect of the layer of anodized 7075-T6 aluminium corrosion properties vol.786, 2017, https://doi.org/10.1088/1742-6596/786/1/012032