• Title/Summary/Keyword: particle monitoring

Search Result 343, Processing Time 0.028 seconds

Monitoring of Airborne Fine Particle using SMPS in Ansan Area (SMPS(Scanning Mobility Particle Sizer)를 이용한 안산지역 대기중 초미세입자(30\~500nm) 분포연구)

  • Kim Yong-min;Ahn Kang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.295-301
    • /
    • 2005
  • The fine particles in the range of $30\~500nm$ are monitored at Hanyang University campus in Ansan using house made DMA (differential mobility analyzer) and commercial CPC (condensation particle counter, TSI inc.) in SMPS mode. The monitoring period is March 16th 2004 through May 7th, 2004. During the monitoring period, Aitken nuclei mode $(30\~100nm)$ particle concentration has a tendency of increase in the morning and evening hours. However, the accumulation mode $(100\~500nm)$ particle concentration stays rather stable than that of Aitken mode.

Advancement of Sequential Particle Monitoring System (측정점 교환방식 미세입자 모니터링 시스템 고도화)

  • An, Sung Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.17-21
    • /
    • 2022
  • In the case of the manufacturing industry that produces high-tech components such as semiconductors and large flat panel displays, the manufacturing space is made into a cleanroom to increase product yield and reliability, and various environmental factors have been managed to maintain the environment. Among them, airborne particle is a representative management item enough to be the standard for actual cleanroom grade, and a sequential particle monitoring system is usually used as one parts of the FMS (Fab or Facility monitoring system). However, this method has a problem in that the measurement efficiency decreases as the length of the sampling tube increases. In this study, in order to solve this problem, a multiple regression model was created. This model can correct the measurement error due to the decrease in efficiency by sampling tube length.

Development and Performance Test of In-situ Particle Monitoring System using Ion-counter in Vacuum Environments (진공 환경내 실시간 입자 모니터링 시스템의 개발 및 성능평가)

  • Ahn Kang-Ho;Kim Yong-Min;Kwon Yong-Taek
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.45-49
    • /
    • 2006
  • In this paper, a new method that monitors the quantity of particles using ion-counter in vacuum environment is introduced. In-situ particle monitoring (ISPM) system is composed by Gerdien type ion-counter (house-made), DC power supply and electrometer. The ion-counter applied by positive voltage detects only positive charged particles. Therefore the particles to be detected should be in known charge state for further data analysis. ion-counter is installed at the exhaust line of process equipment where the pressure loss is structurally low. ISPM system performance has been verified with SMPS (Scanning Mobility Particle Sizer) system. The correlation coefficient is above 0.98 at the particle size range of $20{\sim}300nm$ in diameter with identified charge distribution under $0.1{\sim}10.0$ Torr.

  • PDF

Turbidimetric Measurement for On-line Monitoring of SiO2 Particles

  • Kim, In-Sook;Kim, Yang-Sun;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.801-805
    • /
    • 2004
  • In this work, the fundamental study of on-line monitoring of $SiO_2$ particles in the size range of 40 nm to 725 nm was carried out using turbidimetry. The size of particle was measured using a field emission scanning electron microscope (FE-SEM). The factors affecting on the turbidity were discussed, for example, wavelength, size, and concentration. In order to observe the dependence of turbidity on the wavelength, a turbidimetric system equipped with charged coupled detector (CCD) was built. The shape of the transmitted peak was changed and the peak maximum was shifted to the red when the concentration of particle was increased. This result indicates that the turbidity is related to the wavelength, which corresponds to the characteristic of the Mie extinction coefficient, Q, that is a function of not only particle diameter and refractive index but also wavelength. It is clear that a linear calibration curve for each particle in different size can be obtained at an optimized wavelength.

Particle Monitoring Using Ultrasound in the Gas Flow (초음파를 이용한 기체 유동장내 분진 모니터링)

  • Jhang Kyung-young;Kim Joo-chul;Kim Hong-jun;Hwang Won-ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.78-85
    • /
    • 2004
  • The particle amount monitoring technique using ultrasound is proposed to determine the proper maintenance time of the filter in the supply process of pure gas in the unit of oxygen plant. There are advantages that it is adaptable in high temperature and high pressure, and it is not disturbed by being exposed in the gas flow, and it can be implemented very economically. The applicability of the ultrasonic technique is pre-studied through the theoretical analysis for the dependency of attenuation of ultrasonic wave on the particles in the gas flow. For the purpose, absorption, scattering and dispersion models are considered, and the attenuation by absorption and the change rate of the propagation speed are calculated fur the specific range of particle size and the ultrasonic wave frequency. It was expected by simulation that the absorptive attenuation by particles was the most sensitive to the change of particle amount. The experimental result showed high correspondence with the theoretical expectation so that this ultrasound attenuation measurement was proved to be highly effective for monitoring the amount of floating particles in the gas flow.

Airborne Fine Particle Measurement Data Analysis and Statistical Significance Analysis (공기중 미세입자 측정 데이터 분석 및 통계 유의차 분석)

  • Sung Jun An;Moon Suk Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • Most of the production process is performed in a cleanroom in the case of facilities that produce semiconductor chips or display panels. Therefore, environmental management of cleanrooms is very important for product yield and quality control. Among them, airborne particles are a representative management item enough to be the standard for the actual cleanroom rating, and it is a part of the Fab or Facility monitoring system, and the sequential particle monitoring system is mainly used. However, this method has a problem in that measurement efficiency decreases as the length of the sampling tube increases. In addition, a statistically significant test of deterioration in efficiency has rarely been performed. Therefore, in this study, the statistically significant test between the number of particles measured by InSitu and the number of particles measured for each sampling tube ends(Remote). Through this, the efficiency degradation problem of the sequential particle monitoring system was confirmed by a statistical method.

  • PDF

Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency (광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향)

  • Kim, Young-Gil;Jeon, Ki-Soo;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

A Study on the Optimum Image Capture of Wear Particle for Condition Monitoring of Machine (기계의 상태 모니터링을 위한 최적의 마멸분 영상 획득 방법에 관한 연구)

  • Cho, Yon-Sang;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.301-305
    • /
    • 2007
  • The wear particle analysis has been known as very effective method to foreknow and decide a moving situation and a damage of machine parts by using the digital computer image processing. But it was not laid down and trusted to calculate shape parameters of wear particle and wear volume. In order to apply image processing method in the foreknowledge and decision of lubricated condition, it needs to verify the reliability of the calculated data by the image processing and to lay down the number of images and the amount of wear particle in one image. In this study, the lubricated friction experiment was carried out in order to establish the optimum image capture with the SM45C specimen under experiment condition. The wear particle data were calculated differently according to the number of image and the amount of wear particle in one image.

Development of a Real-time Monitoring Device for Measuring Particulate Matter

  • Kim, Dae Seong;Cho, Young Kuk;Yoon, Young Hun
    • Particle and aerosol research
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, we have developed a real-time monitoring device for measuring $PM_{10/2.5/1}$ of ambient aerosol particles. The real-time PM (Particulate Matter) monitor was based on the light scattering method and had 16 channels in particle size. The laboratory and field tests were carried out to evaluate the performance of the PM monitor developed. Arizona Road Dust particles ranging from diameter of 0.1 to $20{\mu}m$ were generated as test particles in the laboratory test. The field test was carried out at the Seoul Meteorological Observatory. We can obtain the particle size and number concentration (particle size distribution) only from the real-time PM monitor developed. Therefore, the average density of aerosol particles was used to obtain the PM data from the particle size distribution. The $PM_{10/2.5/1}$ results of the PM monitor were compared with the data of the Grimm Dust Monitor (Model 1.108) and a beta ray gauge (Thermo Fisher Scientific). As a result, it was shown that the $PM_{10/2.5/1}$ results obtained by the real-time PM monitor agreed well with the data of the reference devices, and overall, the real-time PM monitor could be used as a PM monitoring device for real-time monitoring of the ambient particles.

Measuring and Diagnostic System for particle and gas in Semiconductor Equipment (반도체 제조장비의 particle/gas 측정ㆍ분석 시스템)

  • 황희융;설용태;임효재;차옥환;이희환
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.178-180
    • /
    • 2002
  • In this Paper, we conducted a experimental study to measure a particle size distribution and mass spectrum with the special instrument such as ISPM and Q-MS. Also, we set up a total measuring system for monitoring the particle in the process chamber.