DOI QR코드

DOI QR Code

Recent Trends of Light-enhanced Metal Oxide Gas Sensors: Review

  • Cho, Minkyu (Department of Mechanical Engineering, Korea Advanced Institue of Science and Technology (KAIST)) ;
  • Park, Inkyu (Department of Mechanical Engineering, Korea Advanced Institue of Science and Technology (KAIST))
  • Received : 2016.03.23
  • Accepted : 2016.03.29
  • Published : 2016.03.31

Abstract

Recent light-enhanced metal oxide gas sensors are reviewed in this article. The basic mechanisms of a light-enhanced metal oxide gas sensor are discussed. Many literatures reveal that the standalone sensitivity and the response/recovery time enhancements enabled by the exposing light are not as high as the performance enhancement provided by external heating. Therefore, both optimal amount of external heating and exposed light intensity are necessary to increase the performance of these light-enhanced gas sensors. The development of highly light sensitive materials and structures is important to lower the overall power consumptions of the sensors.

Keywords

References

  1. Q. Geng, Z. He, X. Chen, W. Dai, and X. Wang, "Gas sensing property of ZnO under visible light irradiation at room temperature", Sens. Actuators, B, Vol. 188, pp. 293-297, 2013. https://doi.org/10.1016/j.snb.2013.07.001
  2. C. Shao, Y. Chang, and Y. Long, "High performance of nanostructured ZnO film gas sensor at room temperature", Sens. Actuators, B, Vol. 204, pp. 666-672, 2014. https://doi.org/10.1016/j.snb.2014.08.003
  3. J. Sun, J. Xu, Y. Yu, P. Sun, F. Liu, and G. Lu, "UV-activated room temperature metal oxide based gas sensor attached with reflector", Sens. Actuators, B, Vol. 169, pp. 291-296, 2012. https://doi.org/10.1016/j.snb.2012.04.083
  4. S. Park, S. An, Y. Mun, and C. Lee, "UV-Enhanced NO2 gas sensing properties of $SnO_2$-Core/ZnO-shell nanowires at room temperature", ACS Appl. Mater. Interfaces, Vol. 5, pp. 4285-4292, 2013. https://doi.org/10.1021/am400500a
  5. E. Comini, G. Faglia, and G. Sberveglieri, "UV light activation of tin oxide thin films for $NO_2$ sensing at low temperatures", Sens. Actuators, B, Vol. 78, pp. 73-77, 2001. https://doi.org/10.1016/S0925-4005(01)00796-1
  6. W. Gopel and K. D. Schierbaum, "$SnO_2$ sensors: current status and future prospects", Sens. Actuators, B, Vol. 26, pp. 1-12, 1995. https://doi.org/10.1016/0925-4005(94)01546-T
  7. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: Sensitivity and influencing factors", Sensors, Vol. 10, p. 2088, 2010. https://doi.org/10.3390/s100302088
  8. S. Park, S. An, H. Ko, S. Lee, and C. Lee, "Synthesis, structure, and UV-enhanced gas sensing properties of Au-functionalized ZnS nanowires", Sens. Actuators, B, Vol. 188, pp. 1270-1276, 2013. https://doi.org/10.1016/j.snb.2013.07.076
  9. J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, et al., "Equivalence between thermal and room temperature UV lightmodulated responses of gas sensors based on individual $SnO_2$ nanowires", Sens. Actuators, B, Vol. 140, pp. 337-341, 2009. https://doi.org/10.1016/j.snb.2009.04.070
  10. Y. Gui, S. Li, J. Xu, and C. Li, "Study on $TiO_2$-doped ZnO thick film gas sensors enhanced by UV light at room temperature", Microelectron. J., Vol. 39, pp. 1120-1125, 2008. https://doi.org/10.1016/j.mejo.2008.01.052
  11. J.-H. Lin, Y.-J. Chen, H.-Y. Lin, and W.-F. Hsieh, "Twophoton resonance assisted huge nonlinear refraction and absorption in ZnO thin films", J. Appl. Phys., Vol. 97, p. 033526, 2005. https://doi.org/10.1063/1.1848192
  12. C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, et al., "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires", Appl. Phys. Lett., Vol. 89, p. 042117, 2006. https://doi.org/10.1063/1.2236276
  13. J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D. q. He, et al., "Enhancement of gas sensing properties of CdS Nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation", ACS Appl. Mater. Interfaces, Vol. 3, pp. 2253-2258, 2011. https://doi.org/10.1021/am200008y
  14. B. P. J. de Lacy Costello, R. J. Ewen, N. M. Ratcliffe, and M. Richards, "Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles", Sens. Actuators, B, Vol. 134, pp. 945-952, 2008. https://doi.org/10.1016/j.snb.2008.06.055
  15. E. Comini, L. Ottini, G. Faglia, and G. Sberveglieri, "$SnO_2$ RGTO UV activation for CO monitoring", IEEE Sens. J., Vol. 4, pp. 17-20, 2004. https://doi.org/10.1109/JSEN.2003.822216
  16. S.-W. Fan, A. K. Srivastava, and V. P. Dravid, "UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO", Appl. Phys. Lett., Vol. 95, p. 142106, 2009. https://doi.org/10.1063/1.3243458
  17. D. Yang, K. Kang, D. Kim, Z. Li, and I. Park, "Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application", Sci. Rep., Vol. 5, p. 8149, 2015. https://doi.org/10.1038/srep08149
  18. J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. k. Mukhopadhyay, et al., "High-resolution electrohydrodynamic jet printing", Nat. Mater., Vol. 6, pp. 782-789, 2007. https://doi.org/10.1038/nmat1974
  19. M. A. Meitl, Z.-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, et al., "Transfer printing by kinetic control of adhesion to an elastomeric stamp", Nat. Mater., Vol. 5, pp. 33-38, 2006. https://doi.org/10.1038/nmat1532
  20. L. Peng, T.-F. Xie, M. Yang, P. Wang, D. Xu, S. Pang, et al., "Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature", Sens. Actuators, B, Vol. 131, pp. 660-664, 2008. https://doi.org/10.1016/j.snb.2007.12.060
  21. Y. Mun, S. Park, S. An, C. Lee, and H. W. Kim, "NO2 gas sensing properties of Au-functionalized porous ZnO nanosheets enhanced by UV irradiation", Ceram. Int., Vol. 39, pp. 8615-8622, 2013. https://doi.org/10.1016/j.ceramint.2013.04.035
  22. O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M. Tiginyanu, et al., "Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature", Sens Actuators, B, Vol. 144, pp. 56-66, 2010. https://doi.org/10.1016/j.snb.2009.10.038

Cited by

  1. UV-enhanced ethanol-sensing properties of TiO2-decorated ZnSnO3 hollow microcubes at low temperature vol.28, pp.17, 2017, https://doi.org/10.1007/s10854-017-7060-x
  2. Room-temperature polymer-coated supersonic cluster beam deposited ZnO film for O 2 gas and dissolved O 2 sensing vol.251, 2017, https://doi.org/10.1016/j.snb.2017.05.173
  3. Effect of Heat and Plasma Treatments on the Photoluminescence of Zinc-Oxide Films vol.52, pp.2, 2018, https://doi.org/10.1134/S1063782618020021
  4. Effects of Ag nanoparticles decorated on ZnO nanorods under visible light illumination on flexible acetylene gas sensing properties 2017, https://doi.org/10.1007/s10832-017-0096-8
  5. “Infinite Sensitivity” of Black Silicon Ammonia Sensor Achieved by Optical and Electric Dual Drives vol.10, pp.5, 2018, https://doi.org/10.1021/acsami.7b16542
  6. Light-Enhanced Vanadium Pentoxide (V2O5) Thin Films for Gas Sensor Applications pp.1543-186X, 2018, https://doi.org/10.1007/s11664-018-6673-z
  7. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor vol.13, pp.1, 2018, https://doi.org/10.1186/s11671-018-2566-6
  8. Preparation of Nanosized Tungsten and Tungsten Oxide Powders vol.60, pp.12, 2018, https://doi.org/10.1134/S1063783419010025
  9. Low-level NO gas sensing properties of $$\hbox {Zn}_{1-x}\hbox {Sn}_{x}\hbox {O}$$ Zn 1 - x Sn x O nanostructure sensors under UV light irradiation at room temperature vol.42, pp.1, 2019, https://doi.org/10.1007/s12034-018-1714-z