DOI QR코드

DOI QR Code

Experimental Analysis on the Behavior of Alternate Bars in a Channel with a Spur Dike

수제의 길이 변화에 의한 교호사주의 거동 분석 실험

  • Jang, Chang-Lae (Department of Civil Engineering, Korea National University of Transportation) ;
  • Song, Youngjin (Department of Civil Engineering, Korea National University of Transportation)
  • 장창래 (한국교통대학교 토목공학과) ;
  • 송영진 (한국교통대학교 토목공학과)
  • Received : 2016.02.11
  • Accepted : 2016.03.20
  • Published : 2016.03.31

Abstract

This study investigated the effects of a spur dike on the development processes, the migration, and the wave length of alternate bars with laboratory experiments. The bar wave length was shown to be shorter as the spur dikes got longer. The forcing effects of a long spur dike on the behavior of alternate bars were stronger than those of a shorter one. However, the bar height was not affected by the variation of the length of a spur dike. The bar migration speed was in inverse proportion to the bar wave length.

본 연구에서는 수제의 길이 변화에 의하여 교호사주의 형성, 사주의 이동과 정지, 사주의 파장에 미치는 영향을 실내실험을 통하여 분석하였다. 수제의 길이가 길어질수록 사주의 이동거리와 파장은 짧아지고, 이동속도는 감소하였다. 수제의 길이가 길수록 사주에 작용하는 강제효과가 강하게 작용하였다. 사주의 파고는 수제의 길이 변화에 크게 영향을 받지 않으며, 거의 일정하게 유지되었다. 그러나 사주의 파장이 감소하면 사주의 이동속도는 증가하며, 사주의 파장과 사주의 이동속도는 반비례 관계를 형성하였다.

Keywords

References

  1. Bertoldi, W., Tubino, M. and Zolezzi, G. 2002. Experimental observations of river bifurcations with uniform and graded sediments. In, River flow 2002, International Conference on Fluvial Hydraulics, Louvain-la-Neuve, Belgium. pp. 751-759.
  2. Blondeaux, P. and Seminara, G. 1985. A unified bar-bend theory of river meanders. Journal of Fluid Mechanics 157: 449-470. https://doi.org/10.1017/S0022112085002440
  3. Crosato, A., Mosselman, E., Desta, F.B. and Uijttewaal, W.S.J. 2011. Experimental and numerical evidence for intrinsic nonmigrating bars in alluvial channels. Water Resources Research 47: W03511, doi:10.1029/2010WR009714.
  4. Ikeda, S. 1984. Prediction of alternate bar wavelength and height. Journal of Hydraulic Engineering, ASCE 110(4): 371-386. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:4(371)
  5. Jang, C.-L. and Jung, K.S. 2006. Numerical experiments of bar migration in meandering channels. Journal of the Korea Society of Civil Engineers 26(2B): 209-216. (in Korean)
  6. Jang, C.-L. and Shimizu, Y. 2005. Numerical simulations of the behavior of alternate bars with different bank strength. Journal of Hydraulic Research 43: 595-611. https://doi.org/10.1080/00221680509500379
  7. Kinoshita, R. and Miwa, H. 1974. River channel formation which prevents downstream translation of transverse bars. Shinsabo 94: 12-17. (in Japanese)
  8. Kuroki, M. and Kishi, T. 1984. Regime criteria on bars and braids in alluvial straight channels. Proceedings of Japan Society of Civil Engineers 342: 87-96. (in Japanese)
  9. Parker, G. and Johannesson, H. 1989. Observations on several recent theories of resonance and overdeepening in meandering channels. In, Ikeda, S. and Parker, G. (eds.), River Meandering, American Geophysical Union, Washington, USA. pp. 379-416.
  10. Seminara, G. and Tubino, M. 1989. Alternate bars and meandering: free, forced, and mixed interactions. In, Ikeda, S. and Parker, G. (eds.), River Meandering, American Geophysical Union, Washington, USA. pp. 267-320.
  11. Strickler, A. 1923. Beitraege zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen fuer Stroeme, Kanaele und geschlossene Leitungen. Mitteilungen des Amtes fuer Wasserwirtschaft. 16: 265-268. (in German)

Cited by

  1. 보 상류 교호사주의 거동에 따른 하류 지형변화에 대한 실험적 분석 vol.52, pp.10, 2016, https://doi.org/10.3741/jkwra.2019.52.s-2.801
  2. 수제 설치에 의한 하도 안정성 평가 vol.6, pp.4, 2016, https://doi.org/10.17820/eri.2019.6.4.314