DOI QR코드

DOI QR Code

Analysis of Foodborne Pathogens in Brassica campestris var. narinosa microgreen from Harvesting and Processing Steps

어린잎채소의 생산 및 가공 공정 중 식중독 미생물 분석

  • Received : 2015.08.26
  • Accepted : 2015.12.30
  • Published : 2016.03.31

Abstract

This study was performed to assess the microbiological quality of Brassica campestris var. narinosa microgreen from harvesting and processing steps. The samples were analyzed for total viable cell counts (TVC), coliforms, Enterobacteriaceae, Escherichia coli, Salmonella spp., Listeria monocytogenes, Vibrio parahaemolyticus, Bacillus cereus, and Staphylococcus aureus. The total viable counts of microgreen (whole leaves) and environment samples from harvesting steps were higher than 6.8 log CFU/g and the contamination level of coliforms in the samples were 3.2 log CFU/g and 3.5 log CFU/g of microgreen and soil, respectively. In case of microgreen samples collected from processing steps, the contamination level of TVC and coliforms were higher in raw materials than samples obtained from later stages of processing, i.e. washing, drain, and final products. The contamination levels of B. cereus in raw materials and environments decreased approximately 1.4 log CFU/g in final products. S. aureus was detected in soil samples but Salmonella spp., Listeria monocytogenes, Vibrio parahaemolyticus and pathogenic E. coli was not detected. In order to identify the sources of contamination for microgreen, the genetic similarity of B. cereus isolates obtained from harvesting and processing steps were compared using the repetitive-sequence-based polymerase chain reaction method. B. cereus isolates obtained from harvesting environments and microgreen were clustered with a similarity greater than 95%. In case of B. cereus isolates obtained from microgreen and environmental samples at processing steps showed low genetic similarity.

어린잎 채소의 생산 및 가공 공정에서 원료농산물과 토양 및 용수 등 환경 시료를 채취하여 미생물학적 품질을 평가하고 식중독을 유발시킬 수 있는 주요 병원성 미생물을 분석하였다. 생산단계 어린잎 채소와 환경 시료의 일반 세균수는 모두 6.8 log CFU/g 이상 분석되었으며 대장균군은 어린잎 채소와 토양에서 각각 3.2 log CFU/g 및 3.5 log CFU/g 수준으로 오염되어 있었다. 가공공정 단계에서는 일반세균수와 대장균군 모두 세척공정이 진행됨에 따라 최종제품 단계에서는 오염수준이 감소되었다. B. cereus의 경우 생산단계에서는 어린잎 채소와 토양 또는 지지토에서 오염도가 높았으며, 가공공정에서는 원료 대비 최종 제품에서 약 1.4 log CFU/g 정도 감소되었다. 병원성 미생물의 정성분석 결과 생산단계에서는 S. aureus를 제외한 모든 병원성 미생물이 음성이었다. 본 연구에서 분리된 B. cereus를 이용하여 rep-PCR에 의한 유전적 상동성을 분석한 결과 생산단계의 경우 지지토와 시료에서 분리된 균주의 유전적 상동성이 높아 반복적으로 이용되는 지지토에 오염된 균주가 어린잎 채소로 이행되었을 가능성을 보여준 반면 가공공정에서 분리된 균주의 경우 유전적 상동성이 낮아 공정 중 재 오염될 가능성이 낮음을 시사하였다.

Keywords

References

  1. Bae YM, Heu SG, and Lee SY (2009) Inhibitory effect of dry-heat treatment and chemical sanitizers against foodborne pathogens contaminated on the surfaces of materials. J Korean Soc Food Sci Nutr 38, 1265−70. https://doi.org/10.3746/jkfn.2009.38.9.1265
  2. Bae YM, Hong YJ, Kang DH, Heu SG, and Lee SY (2011) Microbial and pathogenic contamination of ready-to-eat fresh vegetables in Korea. Korean J Food Sci Technol 43, 161−8. https://doi.org/10.9721/KJFST.2011.43.2.161
  3. Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P et al. (2010) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12, 2385−97. https://doi.org/10.1111/j.1462-2920.2010.02297.x
  4. Beuchat LR (2002) Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes and Infection 4, 413−23. https://doi.org/10.1016/S1286-4579(02)01555-1
  5. Burnett SL and Beuchat LR (2001) Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. J Ind Microbiol Biotechnol 27, 104−10. https://doi.org/10.1038/sj.jim.7000199
  6. Chang TE, Moon SY, Lee K, Park JM, Han JS, Song OJ et al. (2004) Microflora of manufacturing process and final products of saengshik. Korean J Food Sci Technol 36, 501−6.
  7. Cho SD, Youn SJ, Kim DM, and Kim GH (2007) Quality evaluation of freshcut market products by season. J Korean Soc Food Sci Nutr 20, 295−303.
  8. EFSA (2011) Tracing seeds, in particular fenugreek (Trigonella foenumgraecum) seeds, in relation to the Shiga toxin-producing E. coli (STEC) O104:H4 2011 Outbreaks in Germany and France. European Food Safety Authority, Italy.
  9. HPA (2007) Identification of Enterobacteriaceae. National Standard Method BSOP ID 16, Issue 2. Health Protection Agency, UK.
  10. Hyeon JY, Chon JW, Hwang IG, Kwak HS, Kim MS, Kim SK et al. (2011) Prevalence, antibiotic resistance, and molecular characterization of Salmonella serovars in retail meat products J Food Prot 1, 161−6.
  11. ISO (2004) Microbiology of food and animal feeding stuffs-horizontal methods for detection and enumeration of Enterobacteriaceae. International Organization for Standardization, Switzerland.
  12. Jo MJ, Jeong AR, Kim HJ, Lee NR, Oh SW, Kim YJ et al. (2011) Microbiological quality of fresh-cut produce and organic vegetables. Korean J Food Sci Technol 43, 91−7. https://doi.org/10.9721/KJFST.2011.43.1.091
  13. Kang TM, Cho SK, Park JY, Song KB, Chung MS, and Park JH (2011) Analysis of microbial contamination of sprouts and fresh-cut salads in a market. Korean J Food Sci Technol 43, 490−4. https://doi.org/10.9721/KJFST.2011.43.4.490
  14. Kim HJ, Koo MS, Jeong AR, Baek SY, Cho JI, Lee SH et al. (2014) Occurrence of pathogenic Escherichia coli in commercially available fresh vegetable products in Korea. J Korean Soc Appl Biol Chem 57, 367−70. https://doi.org/10.1007/s13765-014-4073-5
  15. Kim SR, Lee JY, Lee SH, Kim WI, Park KH, Yun HJ et al. (2011) Evaluation of microbiological safety of lettuce and cultivation area. Korean J Fd Hyg Safety 26, 289−95.
  16. MFDS (2014) Food code. Ministry of Food and Drug Safety, Korea.
  17. Painter JA, Hoekstra RM, Ayers T, Tauxe RV, Braden CR, Angulo FJ et al. (2013) Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998-2008. Emerg Infect Dis 19, 407−15. https://doi.org/10.3201/eid1903.111866
  18. Rameshkumar N and Nair S (2009) Isolation and molecular characterization of genetically diverse antagonistic, diazotrophic red-pigmented vibrios from different mangrove rhizospheres. FEMS Microbiol Ecol 67, 455-67. https://doi.org/10.1111/j.1574-6941.2008.00638.x
  19. Sivapalasingam S, Fridman CR, Cohen L, and Tauxe RV (2004) Fresh produce: A growing cause of outbreaks of food-borne illness in the United States, 1973 through 1997. J Food Protect 67, 2342−53. https://doi.org/10.4315/0362-028X-67.10.2342

Cited by

  1. Nutritional characterization and shelf-life of packaged microgreens pp.2042-650X, 2018, https://doi.org/10.1039/C8FO01182F
  2. 영양부추에서 이산화염소와 차아염소산나트륨 처리의 식중독세균 저감화 효과 vol.32, pp.2, 2016, https://doi.org/10.13103/jfhs.2017.32.2.154
  3. Corosolic acid에 의한 Staphylococcus aureus의 생장 및 생물막 형성 저해 vol.49, pp.2, 2016, https://doi.org/10.9721/kjfst.2017.49.2.146
  4. 유통 중인 어린잎채소의 미생물 오염도 조사 vol.34, pp.6, 2019, https://doi.org/10.13103/jfhs.2019.34.6.526
  5. Control Measures of Pathogenic Microorganisms and Shelf-Life Extension of Fresh-Cut Vegetables vol.10, pp.3, 2021, https://doi.org/10.3390/foods10030655