DOI QR코드

DOI QR Code

Effects of Environmental Factors on the Zoospore Release and Germling Growth of the Green Macroalga Chaetomorpha linum

녹조류 실염주말의 유주자 방출과 배아생장에 미치는 환경요인의 영향

  • Han, Su Jin (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University) ;
  • Na, Yeon Ju (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University) ;
  • Jeon, Da Vine (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University) ;
  • Kim, Young Sik (Department of Marine Biotechnology, College of Ocean Science & Technology, Kunsan National University) ;
  • Choi, Han Gil (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University) ;
  • Nam, Ki Wan (Department of Marine Biology, College of Fisheries Sciences, Pukyong National University)
  • 한수진 (원광대학교 생명과학부, 환경과학연구소) ;
  • 나연주 (원광대학교 생명과학부, 환경과학연구소) ;
  • 전다빈 (원광대학교 생명과학부, 환경과학연구소) ;
  • 김영식 (군산대학교 해양과학대학 해양생물공학과) ;
  • 최한길 (원광대학교 생명과학부, 환경과학연구소) ;
  • 남기완 (부경대학교 수산과학대학 자원생물학과)
  • Received : 2016.02.22
  • Accepted : 2016.03.10
  • Published : 2016.03.30

Abstract

Effects of environmental factors on the zoospore release and germling growth of Chaetomorpha linum were examined. Zoospore release and germling growth experiments were carried out under a combination of temperatures ${\times}$ irradiances, and a single factor of irradiances, salinities, daylength and nutrients (nitrogen, phosphorus). Zoospore release was maximal under condition of $20^{\circ}C{\times}100{\mu}mol\;photons\;m^{-2}s^{-1}$ in a factorial experiment (temperatures ${\times}$ irradiances), at $100{\mu}mol\;photons\;m^{-2}s^{-1}$ in irradiance experiment and at 34 psu in salinity conditions. After 24 days in culture, germling growth was maximal at $25^{\circ}C{\times}100{\mu}mol\;photons\;m^{-2}s^{-1}$ in temperatures ${\times}$ irradiances and at normal seawater (34 psu) in salinity. Germling growth is faster at higher irradiance under same temperature condition and it increased with increasing daylengths (8-16 h). Chaetomorpha linum grew in wide range of N and P concentrations. The growth of germling was maximal at $50{\mu}M\;{PO_4}^{3-}$ and $40{\mu}M\;{NH_4}^+$. Germling growth was more effective under nitrogen addition than phosphorus addition in culture. In conclusion, optimal environmental conditions for zoospore release were $20^{\circ}C$, $100{\mu}mol\;photons\;m^{-2}s^{-1}$, and 34 psu. In addition, the optimal germling growth was observed at $25^{\circ}C$, $100{\mu}mol\;photons\;m^{-2}s^{-1}$, 34 psu, 16 h, $50{\mu}M\;({PO_4}^{3-})$ and $40{\mu}M\;{(NH_4}^+)$.

Keywords

References

  1. Ajjabi LC, Chouba L (2009) Biosorption of $Cu^{2+}$ and $Zn^{2+}$ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J Environ Manage 90:3485-3489 https://doi.org/10.1016/j.jenvman.2009.06.001
  2. Bischof K, Rautenberger R, Brey L, Perez-Llorens JL (2006) Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain. Mar Ecol- Prog Ser 306:165-175 https://doi.org/10.3354/meps306165
  3. Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of nutrient enrichment in the nation's estuaries: a decade of change. Harmful Algae 8:21-32 https://doi.org/10.1016/j.hal.2008.08.028
  4. Callow ME, Callow JA (2000) Substratum location and zoospore behaviour in the fouling alga Enteromorpha. Biofouling 15:49-56 https://doi.org/10.1080/08927010009386297
  5. Castelar B, Reis RP, dos Santos Calheiros AC (2014) Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) cultivation in Brazilian tropical waters: recruitment, growth, and ulvan yield. J Appl Phycol 26:1989-1999 https://doi.org/10.1007/s10811-014-0329-z
  6. Chan F, Barth JA, Lubchenco J, Kirincich A, Weeks H, Peterson WT, Menge BA (2008) Emergence of anoxia in the Califonia current large marine ecosystem. Science 319:920 https://doi.org/10.1126/science.1149016
  7. Chi YX, Wang LM, Luan RX, Wang HW (2009) Chaetomorpha valida, a new recorded green alga species in genus Chaetomorpha Kützing in China. Fish Sci 28: 162-163 (in Chinese)
  8. Choi HG, Lee KH, Yoo HI, Kang PJ, Kim YS, Nam KW (2008) Physiological differences in the growth of Sargassum horneri between the germling and adult stages. J Appl Phycol 20:729-735 https://doi.org/10.1007/s10811-007-9281-5
  9. Choi TS, Kang EJ, Kim JH, Kim KY (2010) Effects of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed. Algae 25:17-26 https://doi.org/10.4490/algae.2010.25.1.017
  10. Copertino MS, Tormena T, Seeliger U (2009) Biofiltering efficiency, uptake and assimilation rates of Ulva clathrata (Roth) J. Agardh (Chlorophyceae) cultivated in shrimp aquaculture waste water. J Appl Phycol 21:31-45 https://doi.org/10.1007/s10811-008-9357-x
  11. Cordi B, Donkin ME, Peloquin J, Price DN (2001) The influence of UV-B radiation on the reproductive cells of the intertidal macroalga, Enteromorpha intestinalis. Aquat Toxicol 56:1-11 https://doi.org/10.1016/S0166-445X(01)00194-1
  12. Deng Y, Tang X, Huang B, Ding L (2011a) Life history of Chaetomorpha valida (Cladophoraceae, Chlorophyta) in culture. Bot Mar 54:551-556
  13. Deng Y, Tang X, Huang B, Ding L (2011b) The temperature character of marine green alga, Chaetomorpha valida, with analysis of its diffusion potential in marine algal flora of China. Oceanol Limnol Sin 42:404-408
  14. Deng Y, Tang X, Huang B, Ding L (2012) Effect of temperature and irradiance on the growth and reproduction of the green macroalga, Chaetomorpha valida (Cladophoraceae, Chlorophyta). J Appl Phycol 24:927-933 https://doi.org/10.1007/s10811-011-9713-0
  15. Deng Y, Tang X, Zhan Z, Teng L, Ding L, Huang B (2013) Culture observation and molecular phylogenetic analysis on the blooming green alga Chaetomorpha valida (Cladophorales, Chlorophyta) from China. Chin J Oceanol Limn 31:552-559 https://doi.org/10.1007/s00343-013-2216-x
  16. de Paula Silva PH, McBride S, de Nys R, Paul NA (2008) Integrating filamentous 'green tide' algae into tropical pond-based aquaculture. Aquaculture 284:74-80 https://doi.org/10.1016/j.aquaculture.2008.07.035
  17. Fan X, Xu D, Wang Y, Zhang X, Cao S, Mou S, Ye N (2014) The effect of nutrient concentrations, nutrient ratios and temperature on photosynthesis and nutrient uptake by Ulva prolifera: implications for the explosion in green tides. J Appl Phycol 26:537-544 https://doi.org/10.1007/s10811-013-0054-z
  18. Fu G, Yao J, Liu F, Liu J, Wang X, Fu W, Li D, Zhou M, Sun S, Duan D (2008) Effect of temperature and irradiance on the growth and reproduction of Enteromorpha prolifera J. Ag. (Chlorophycophyta, Chlorophyceae). Chin J Oceanol Limn 26:357-362 https://doi.org/10.1007/s00343-008-0357-0
  19. Gao L, Zhang L, Hou J, Wei Q, Fu F, Shao H (2013) Decomposition of macroalgal blooms influences phosphorus release from the sediments and implications for coastal restoration in Swan Lake, Shandong, China. Ecol Eng 60:19-28 https://doi.org/10.1016/j.ecoleng.2013.07.055
  20. Gao Z, Xu D, Meng C, Zhang X, Wang Y, Li D, Zou J, Zhuang Z, Ye N (2014) The green tide-forming macroalga Ulva linza outcompetes the red macroalga Gracilaria lemaneiformis via allelopathy and fast nutrients uptake. Aquat Ecol 48:53-62 https://doi.org/10.1007/s10452-013-9465-9
  21. Gavio B, Mancera-Pineda JE (2015) Blooms of ephemeral green algae in San Andres island, international biosphere reserve seaflower, southwestern Caribbean. Acta Biol Colomb 20:259-262
  22. Hiraoka M, Enomoto S (1998) The induction of reproductive cell formation of Ulva pertusa Kjellman (Ulvales, Ulvophyceae). Phycol Res 46:199-203 https://doi.org/10.1111/j.1440-1835.1998.tb00114.x
  23. Hiraoka M, Oka N (2008) Tank cultivation of Ulva prolifera in deep seawater using a new "germling cluster" method. J Appl Phycol 20:97-102 https://doi.org/10.1007/s10811-007-9186-3
  24. Hiraoka M, Shimada S, Ohno M, Serisawa Y (2003) Asexual life history by quadriflagellate swarmers of Ulva spinulosa (Ulvales, Ulvophyceae). Phycol Res 51:29-34 https://doi.org/10.1111/j.1440-1835.2003.tb00167.x
  25. Hoffmann A, Santelices B (1991) Banks of algal microscopic forms: hypotheses on their functioning and comparisons with seed banks. Mar Ecol-Prog Ser 79:185-194 https://doi.org/10.3354/meps079185
  26. Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9:18-26 https://doi.org/10.1890/100008
  27. Imchen T (2012a) Effect of temperature, salinity and biofilm on the zoospores settlement of Enteromorpha flexuosa (Wulfen) J. Agardh. Indian J Geomarine Sci 41:355-358
  28. Imchen T (2012b) Recruitment potential of a green alga Ulva flexuosa Wulfen dark preserved zoospore and its development. PLoS ONE 7:e32651. doi:10.1371/journal.pone.0032651
  29. Jeon DV, Na YJ, Yu OH, Choi HG (2015) Effects of varying $CO_2$, nutrient and light irradiance levels on the growth of Ulva australis at germling, juvenile, and adult stages. Kor J Fish Aquat Sci 48:96-103
  30. Kakinuma M, Kuno Y, Amano H (2004) Salinity stress responses of a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Fisheries Sci 70:1177-1179 https://doi.org/10.1111/j.1444-2906.2004.00921.x
  31. Kim DS, Hong JP, Kim YD, Song HI, Kim HG (2007) Seed production and cultivation of Ecklonia stolonifera Okamura, Phaeophyta. J Aquac 20:7-13
  32. Kim HG, Park JG, Kim DS (2005) Comparative laboratory culture studies of the native kelp Kjellmaniella crassifolia and the introduced kelp Laminaria japonica in east coast of Korea. J Aquac 18:299-304
  33. Lotze HK, Schramm W, Schories D, Worm B (1999) Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp. Oecologia 119:46-54 https://doi.org/10.1007/s004420050759
  34. Lotze HK, Worm B, Sommer U (2000) Propagule banks, herbivory and nutrient supply control population development and dominance patterns in macroalgal blooms. Oikos 89:46-58 https://doi.org/10.1034/j.1600-0706.2000.890106.x
  35. Martins I, Marcotegui A, Marques JC (2008) Impacts of macroalgal spores on the dynamics of adult macroalgae in a eutrophic estuary: high versus low hydrodynamic seasons and long-term simulations for global warming scenarios. Mar Pollut Bull 56:984-998 https://doi.org/10.1016/j.marpolbul.2008.01.025
  36. Mantri VA, Singh RP, Bijo AJ, Kumari P, Reddy CRK, Jha B (2011) Differential response of varying salinity and temperature on zoospore induction, regeneration and daily growth rate in Ulva fasciata (Chlorophyta, Ulvales). J Appl Phycol 23:243-250 https://doi.org/10.1007/s10811-010-9544-4
  37. McGlathery KJ, Pedersen MF (1999) The effect of growth irradiance on the coupling of carbon and nitrogen metabolism in Chaetomorpha linum. J Phycol 35:721-731 https://doi.org/10.1046/j.1529-8817.1999.3540721.x
  38. Menendez M (2005) Effect of nutrient pulses on photosynthesis of Chaetomorpha linum from a shallow Mediterranean coastal lagoon. Aquat Bot 82:181-192 https://doi.org/10.1016/j.aquabot.2005.04.004
  39. Nelson TA, Olson J, Imhoff L, Nelson AV (2010) Aerial exposure and desiccation tolerances are correlated to species composition in "green tides" of the Salish Sea (northeastern Pacific). Bot Mar 53:103-111
  40. Olla BL, Davis MW, Rose C (2000) Differences in orientation and swimming of walleye Pollock Theragra chalcogramma in a trawl net under light and dark conditions: concordance between field andlaboratory observations. Fish Res 44:261-266 https://doi.org/10.1016/S0165-7836(99)00093-4
  41. Peckol P, Rivers JS (1995) Physiological responses of the opportunistic macroalgae Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan) to environmental disturbances associated with eutrophication. J Exp Mar Biol Ecol 190:1-16 https://doi.org/10.1016/0022-0981(95)00026-N
  42. Renjun W, You W, Jing Z, Junhua S, Xuexi T (2013) Algicidal activity of Ulva pertusa and Ulva prolifera on Prorocentrum donghaiense under laboratory conditions. Afr J Microbiol Res 7:4389-4396
  43. Santelices B, Aedo D, Hoffmann A (2002) Banks of microscopic forms and survival to darkness of propagules and microscopic stages of macroalgae. Rev Chil Hist Nat 75:547-555
  44. Schories D (1995) Sporulation of Enteromorpha spp. (Chlorophyta) and overwintering of spores in sediments of the Wadden Sea, Island Sylt, North Sea. Neth J Aquat Ecol 29:341-347 https://doi.org/10.1007/BF02084233
  45. Serisawa Y, Yokohama Y, Aruga Y, Tanaka J (2002) Growth of Ecklonia cava (Laminariales, Phaeophyta) sporophytes transplanted to a locality with different temperature conditions. Phycol Res 50:201-207 https://doi.org/10.1111/j.1440-1835.2002.tb00152.x
  46. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W. H. Freeman and Company, NY, 887 p
  47. Sousa AI, Martins I, Lillebo AI, Flindt MR, Pardal MA (2007) Influence of salinity, nutrients and light on the germination and growth of Enteromorpha sp. spores. J Exp Mar Biol Ecol 341:142-150 https://doi.org/10.1016/j.jembe.2006.09.020
  48. Taylor R, Fletcher RL, Raven JA (2001) Preliminary studies on the growth of selected 'green tide' algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot Mar 44:327-336
  49. Tsutsui I, Miyoshi T, Aue-umneoy D, Songphatkaew J, Meeanan C, Klomkling S, Sukchai H, Pinphoo P, Yamaguchi I, Ganmanee M, Maeno Y, Hamano K (2015) High tolerance of Chaetomorpha sp. to salinity and water temperature enables survival and growth in stagnant waters of central Thailand. Int Aquat Res 7:47-62 https://doi.org/10.1007/s40071-014-0092-4
  50. Tyler AC, McGlathery KJ, Anderson IC (2001) Macroalgae mediation of dissolved organic nitrogen fluxes in a temperate coastal lagoon. Estuar Coast Shelf S 53:155-168 https://doi.org/10.1006/ecss.2001.0801
  51. Xu Y, Lin J (2008) Effect of temperature, salinity, and light intensity on the growth of the green macroalga, Chaetomorpha linum. J World Aquacult Soc 39:847-851 https://doi.org/10.1111/j.1749-7345.2008.00223.x
  52. Yabe T, Ishii Y, Amano Y, Koga T, Hayashi S, Nohara S, Tatsumoto H (2009) Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan. Limnology 10:239-245 https://doi.org/10.1007/s10201-009-0278-4
  53. Ye N, Zhang X, Mao Y, Liang C, Xu D, Zou J, Zhuang Z, Wang Q (2011) 'Green tides' are overwhelming the coastline of our blue planet: taking the world's largest example. Ecol Res 26:477-485 https://doi.org/10.1007/s11284-011-0821-8
  54. Zhang J, Huo Y, Yu K, Chen Q, He Q, Han W, Chen L, Cao J, Shi D, He P (2013) Growth characteristics and reproductive capability of green tide algae in Rudong coast, China. J Appl Phycol 25:795-803 https://doi.org/10.1007/s10811-012-9972-4
  55. Zhang L, Shao H (2013) Direct plant-plant facilitation in coastal wetlands: a review. Estuar Coast Shelf S 119:1-6 https://doi.org/10.1016/j.ecss.2013.01.002