DOI QR코드

DOI QR Code

Analyzing landslide data using Cauchy cluster process

코시 군집 과정을 이용한 산사태 자료 분석

  • Lee, Kise (Department of Statistics, Inha University) ;
  • Kim, Jeonghwan (Department of Statistics, Inha University) ;
  • Park, No-wook (Department of Geoinformatic Engineering, Inha University) ;
  • Lee, Woojoo (Department of Statistics, Inha University)
  • Received : 2015.12.28
  • Accepted : 2016.01.26
  • Published : 2016.02.29

Abstract

Inhomogeneous Poisson process models are widely applied to landslide data to understand how environmental variables systematically influence the risk of landslides. However, those models cannot successfully explain the clustering phenomenon of landslide locations. In order to overcome this limitation, we propose to use a Cauchy cluster process model and show how it improves the goodness of fit to the landslide data in terms of K-function. In addition, a numerical study is performed to select the optimal estimation method for the Cauchy cluster process.

산사태 자료에서 환경변수들이 산사태 발생 위험에 어떻게 영향을 주는지 분석하기 위해 현재까지 비동질적 포아송 과정 모형이 주로 사용되어 왔다. 그렇지만, 이 모형은 산사태 자료에서 쉽게 관측되는 산사태 위치의 군집 현상에 대해 설명하지 못한다. 이러한 한계점을 극복하기 위해 우리는 코시 군집 과정을 사용할 것을 제안한다. 그리고, 제안된 방법이 실제 산사태 자료에서 얼마나 모형의 적합도를 개선시키는지 K-함수의 관점에서 살펴보고자 한다. 또한, 코시 군집 과정의 모수 추론을 위해 제안된 다양한 추정 방법의 성능을 비교하기 위해 시뮬레이션 연구를 진행하였다.

Keywords

References

  1. Baddeley, A., Moller, J., and Waagepetersen, R. (2000). Non- and semiparametric estimation of interaction in inhomogeneous point patterns, Statistica Neerlandica, 54, 329-350. https://doi.org/10.1111/1467-9574.00144
  2. Baddeley, A. (2008). Analyzing spatial point patterns in R, CSIRO Division of Mathematics and Statistics, October 2008.
  3. Ghorbani, M. (2012). Cauchy cluster process, Metrika, 76, 697-706.
  4. Guan, Y. and Shen, Y. (2010). A weighted estimating equation approach for inhomogeneous spatial point processes, Biometrika, 97, 867-880. https://doi.org/10.1093/biomet/asq043
  5. Guan, Y., Jalilian, A., and Waagepetersen, R. (2015). Quasi-likelihood for Spatial Point processes, Journal of the Royal Statistical Society, Series B, 77, 677-697. https://doi.org/10.1111/rssb.12083
  6. Park, N. W., Chi, K. H., Chung, C. F., and Kwon, B. D. (2003). GIS-based data-driven geological data integration using fuzzy logic: theory and application, Economic and Environmental Geology, 36, 243-255.
  7. Park, N. W. (2015). Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets, Environmental Earth Sciences, 73, 937-949. https://doi.org/10.1007/s12665-014-3442-z
  8. Ripley, B. D. (1976). The second-order analysis of stationary point processes, Journal of Applied Probability, 13, 255-266. https://doi.org/10.2307/3212829
  9. Tanaka, U., Ogata, Y., and Stoyan, D. (2008). Parameter estimation and model selection for Neyman-Scott point processes, Biometrical Journal, 50, 43-57. https://doi.org/10.1002/bimj.200610339
  10. Tonini, M., Pedrazzini, A., Penna, I., and Jaboyedoff, M. (2013). Spatial pattern of landslides in Swiss Rhone Valley, Natural Hazards, 73, 97-110.
  11. Waagepetersen, R. (2007). An estimating function approach to inference for inhomogeneous Neyman-Scott processes, Biometrics, 63, 252-258. https://doi.org/10.1111/j.1541-0420.2006.00667.x