DOI QR코드

DOI QR Code

Correlation of acoustic features and electrophysiological outcomes of stimuli at the level of auditory brainstem

자극음의 음향적 특성과 청각 뇌간에서의 전기생리학적 반응의 상관성

  • 전현지 (한림대학교 일반대학원 언어병리청각학과) ;
  • 한우재 (한림대학교 자연과학대학 언어청각학부, 청각언어연구소)
  • Received : 2015.08.27
  • Accepted : 2015.11.05
  • Published : 2016.01.31

Abstract

It is widely acknowledged that the human auditory system is organized tonotopically and people generally listen to sounds as a function of frequency distribution through the auditory system. However, it is still unclear how acoustic features of speech sounds are indicated to the human brain in terms of speech perception. Thus, the purpose of this study is to investigate whether two sounds with similar high-frequency characteristics in the acoustic analysis show similar results at the level of auditory brainstem. Thirty three young adults with normal hearing participated in the study. As stimuli, two Korean monosyllables (i.e., /ja/ and /cha/) and four frequencies of toneburst (i.e., 500, 1000, 2000, and 4000 Hz) were used to elicit the auditory brainstem response (ABR). Measures of monosyllable and toneburst were highly replicable and the wave V of waveform was detectable in all subjects. In the results of Pearson correlation analysis, the /ja/ syllable had a high correlation with 4000 Hz of toneburst which means that its acoustic characteristics (i.e., 3671~5384 Hz) showed the same results in the brainstem. However, the /cha/ syllable had a high correlation with 1000 and 2000 Hz of toneburst although it has acoustical distribution of 3362~5412 Hz. We concluded that there was disagreement between acoustic features and physiology outcomes at the auditory brainstem level. This finding suggests that an acoustical-perceptual mapping study is needed to scrutinize human speech perception.

청각기관의 음조체계로 인해 사람들은 일반적으로 주파수 분포에 따라 소리를 듣는다. 그러나 어음인지 측면에서 어음의 음향적 특성이 사람의 뇌에서 어떻게 인식되는지는 여전히 명확하지 않다. 따라서 본 연구에서는 유사한 고주파수 음향적 특성을 갖는 두 개의 어음이 청각 뇌간에서 전기생리학적으로 어떻게 발현되는 지 확인하고자 하였다. 정상 청력을 지닌 20대 성인 33명이 실험에 참여하였다. 자극음으로 두 개의 한국어 단음절 /자/와 /차/, 4개의 주파수로 구성된 톤버스트음(500, 1000, 2000, 4000 Hz)을 사용하여 청성뇌간반응을 얻었다. 연구 결과, 단음절과 톤버스트음 모두 높은 재현성을 보였고, 파형 V는 모든 피검자에게서 잘 발현되었다. 피어슨 상관관계 분석 결과, 3671 ~ 5384 Hz 대역에서 에너지 분포를 갖는 /자/ 음절은 4000 Hz의 톤버스트음과 높은 상관관계를 나타냈다. 그러나 /차/ 음절은 1000 Hz와 2000 Hz의 톤버스트음과 높은 상관성을 보여, 3362~5412 Hz의 음향적 특성과 청각 뇌간에서 생리학적 반응은 일치하지 않았다. 이러한 결과를 바탕으로 사람의 어음인지과정을 면밀히 조사하기 위해 음향-청지각적 매핑후속 연구가 필요하겠다.

Keywords

References

  1. T. M. Talavage, M. I. Sereno, J. R. Melcher, P. J. Ledden, B. R. Rosen, and A. M. Dale, "Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity," J. Neurophysiol. 91, 1282-1296 (2004). https://doi.org/10.1152/jn.01125.2002
  2. K. Kandler, A. Clause, and J. Noh, "Tonotopic reorganization of developing auditory brainstem circuits," Nat. Neurosci. 12, 711-717 (2009). https://doi.org/10.1038/nn.2332
  3. S. J. Luck, An Introduction to the event-related potential technique (The MIT Press, Cambridge, 2005), pp. 1-50.
  4. W. Han, "P1-N1-P2 complex and acoustic change complex elicited by speech sounds: Current research and applications," Audiol. 6, 121-127 (2010).
  5. J. Drift, M. Brocaar, and G. Zanten, "The relation between the pure-tone audiogram and the click auditory brainstem response threshold in cochlear hearing loss," Audiol. 26, 1-10 (1987). https://doi.org/10.3109/00206098709078402
  6. K. Lee, and S. Jeong, "Hearing threshold prediction using auditory brainstem response and auditory steady state response in infants and young children" (in Korean), Korean J. Otohinolaryngol-Head Neck Surg. 54, 592-602 (2011). https://doi.org/10.3342/kjorl-hns.2011.54.9.592
  7. C. H. Chien, T. Y. Tu, A. S. Shiao, S. F. Chien, Y. F. Wang, A. C. Li, and M. J. Yang, "Prediction of the pure-tone average from the speech reception and auditory brainstem response thresholds in a geriatric population," ORL J Otorhinolaryngol Relat Spec. 70, 366-372 (2008). https://doi.org/10.1159/000163032
  8. C. G. Matas, "Medidas eletrofisiologicas da audicao: audiometria detronco cerebral. Em: Carvallo RMM. Fonoaudiologia informacao paraformacao," Procedimentos em audiologia. Rio de Janeiro: Guanabara Koogan. 43-57 (2003).
  9. M. P. Gorga, D. W. Worthington, J. K. Reiland, K. A. Beauchaine, and D. E. Goldgar, "Some comparisons between auditory brainstem response thresholds, latencies and the pure-tone audiogram," Ear Hear. 6, 105-112 (1985). https://doi.org/10.1097/00003446-198503000-00008
  10. N. Russo, T. Nicol, B. Trommer, S. Zecker, and N. Kraus, "Brainstem transcription of speech is disrupted in children with autism spectrum disorders," Dev. Sci. 12, 557-567 (2009). https://doi.org/10.1111/j.1467-7687.2008.00790.x
  11. J. H. Song, E. Skoe, P. C. Wong, and N. Kraus, "Plasticity in the adult human auditory brainstem following short-term linguistic training," J. Cogn. Neurosci. 20, 1892-1902 (2008). https://doi.org/10.1162/jocn.2008.20131
  12. A. Palmer, and S. Shamma, "Physiological representations of speech," in Speech Processing in the Auditory System, edited by S. Greenberg, W. A. Ainsworth, A. N. Popper, and R. R. Fay (Springer, New York, 2004).
  13. J. H. Song, K. Banai, N. M. Russo, and N. Kraus, "On the relationship between speech- and nonspeech-evoked auditory brainstem responses," Audiol. Neurotol. 11, 233-241 (2006). https://doi.org/10.1159/000093058
  14. K. L. Johnson, T. Nicol, S. G. Zecker, A. R. Bradlow, E. Skoe, and N. Kraus, "Brainstem encoding of voiced consonant-vowel stop syllables," Clin. Neurophysiol. 119, 2623-2635 (2008). https://doi.org/10.1016/j.clinph.2008.07.277
  15. S. Greenberg, WPP, No. 52: Temporal neural coding of pitch and vowel quality (eScholarship, California, 1980), pp. 1-183.
  16. G. C. Galbraith, P. W. Arbagey, R. Branski, N. Comerci, and P. M. Rector, "Intelligible speech encoded in the human brain stem frequency following response," Neuro. Report. 6, 2363-2367 (1995).
  17. D. L. Strait, N. Kraus, E. Skoe, and R. Ashley, "Musical experience and neural efficiency effects of training on subcortical processing of vocal expressions of emotion," Eur. J. Neurosci. 29, 661-668 (2009). https://doi.org/10.1111/j.1460-9568.2009.06617.x
  18. J. Lee, H. Jang, and H. Jung, "A study on frequency characteristics of korean phonemes" (in Korean), Audiol. 1, 59-66 (2005).
  19. J. Kim, H. Hong, H. Shin, K. Lee, B. Hong, and J. Lee, "Development of korean standard monosyllabic word lists" (in Korean), Audiol. 4, 126-140 (2008).
  20. Praat: doing phonetics by computer, http://www.fon.hum.uva.nl/praat/, 2015.
  21. F. R. Pinto, and C. G. Matas, "A comparison between hearing and tone burst electrophysiological thresholds," Rev. Bras. Otorhinolaryngol. 73, 513-522 (2007).
  22. K. R. Vander Werff, and K. S. Burns, "Brain stem responses to speech in younger and older adults," Ear Hear. 32, 168-180 (2011). https://doi.org/10.1097/AUD.0b013e3181f534b5
  23. N. Russo, T. Nicol, G. Musacchia, and N. Kraus, "Brainstem responses to speech syllables," Clin. Neurophysiol. 115, 2021-2030 (2004). https://doi.org/10.1016/j.clinph.2004.04.003
  24. H. No and S. Chae, "Acoustic analyses of monosyllabic words which are difficult to discriminate in the high frequency hearing loss" (in Korean), Korean J. Otolaryngol. 44, 700-706 (2001).
  25. A. Moller, "Review of the roles of temporal and place coding of frequency in speech discrimination," Acta Otolaryngol. 119, 424-430 (1999). https://doi.org/10.1080/00016489950180946
  26. A. S. Bregman, Auditory scene analysis: The perceptual organization of sound (The MIT Press, Cambridge, 2005), pp. 47-211.
  27. H. Ryu, H. Shim, and J. Kim, "A study of the relation between korean consonant perception test (KCPT) and hearing thresholds as a function of frequencies" (in Korean), Audiol. 7, 153-163 (2011).