References
- Abdel Karim, M. and Ohno, N. (2000), "Kinematic hardening model suitable for ratcheting with steadystate", Int. J. Plast., 16(3-4), 225-240. https://doi.org/10.1016/S0749-6419(99)00052-2
- ASME (2007), American society of mechanical engineers; Section iii, New York, NY, USA.
- Bari, S. and Hassan, T. (2000), "Anatomy of coupled constitutive model of ratcheting simulation", Int. J. Plast., 16(3-4), 381-409. https://doi.org/10.1016/S0749-6419(99)00059-5
- Bari, S. and Hassan, T. (2002), "An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation", Int. J. Plast., 18(7), 873-894. https://doi.org/10.1016/S0749-6419(01)00012-2
- Chaboche, J.L. (1986), "Time independent constitutive theories for cyclic plasticity", Int. J. Plast., 2(2), 149-188. https://doi.org/10.1016/0749-6419(86)90010-0
- Chaboche, J.L., Dang-Van, K. and Cordier, G. (1979), "Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel", Proceedings of the 5th International Conference on SMiRT, Div. L, Berlin, Germany, August.
- Chen, X., Jiao, R. and Kim, K.S. (2005), "On the Ohno-Wang kinematic hardening rules for multiaxial ratchetting modeling of medium carbon steel", Int. J. Plast., 21(1), 161-184. https://doi.org/10.1016/j.ijplas.2004.05.005
- Chen, X.H., Chen, X., Yu, D.J. and Gao, B.J. (2013), "Recent progresses in experimental investigation and finite element analysis of ratcheting in pressurized piping", Int. J. Pres. Ves. Pip., 101, 113-142. https://doi.org/10.1016/j.ijpvp.2012.10.008
- Chen, X.H., Chen, X., Chen, G. and Li, D.M. (2015), "Ratcheting behavior of pressurized Z2CND18.12N stainless steel pipe under different control modes", Steel Compos. Struct., Int. J., 18(1), 29-50. https://doi.org/10.12989/scs.2015.18.1.029
- Hassan, T., Rahman, M. and Bari, S. (2015), "Low-cycle fatigue and ratcheting responses of elbow piping components", J. Press. Vess.-T. ASME, 137(3), 031010-1-12. https://doi.org/10.1115/1.4029068
- Kim, J.W., Lee, S.H. and Park, C.Y. (2009), "Experimental evaluation of the effect of local wall thinning on the failure pressure of elbows", Nucl. Eng. Des., 239(12), 2737-2746. https://doi.org/10.1016/j.nucengdes.2009.10.003
- KTA (1995), Kerntechnischer Ausschuss; Sicherheitstechnische Regel des KTA, Komponenten des primarkreises von Leichtisserreaktoren, Teil: Auslegung, Konstruktion und Berchnung, Regelanderungsentwurf.
- Li, H., Wood, J., McCormack, R. and Hamiton, R. (2013), "Numerical simulation of ratcheting and fatigue behavior of mitred pipe bends under in-plane bending and internal pressure", Int. J. Pres. Ves. Pip., 101, 154-160. https://doi.org/10.1016/j.ijpvp.2012.11.003
- Ohno, N. and Wang, J.D. (1993a), "Kinematic hardening rules with critical state of dynamic recovery, Part I: formulations and basic features for ratcheting behavior", Int. J. Plast., 9(3), 375-390. https://doi.org/10.1016/0749-6419(93)90042-O
- Ohno, N. and Wang, J.D. (1993b), "Kinimatic hardening rules with critical state of dynamic recovery, Part II: Application to experiments of ratcheting behavior", Int. J. Plast., 9(3), 391-403. https://doi.org/10.1016/0749-6419(93)90043-P
- RCC-MR (1985), Design rules for class 1 equipment, RCC-MR codes, revision.
- Shi, H.G., Chen, G., Wang, Y. and Chen, X. (2013), "Ratcheting behavior of pressurized elbow pipe with local wall thinning", Int. J. Pres. Ves. Pip., 102-103, 14-23. https://doi.org/10.1016/j.ijpvp.2012.12.002
- Simo, J.C. and Taylor, R.L. (1985), "Consistent tangent operators for rate-independent elastoplasticity", Comput. Method. Appl. Mech. Eng., 48(1), 101-118. https://doi.org/10.1016/0045-7825(85)90070-2
- Simo, J.C. and Taylor, R.L. (1986), "A return mapping algorithm for plane stress elasto-plasticity", Int. J. Numer. Meth. Eng., 22, 649-670. https://doi.org/10.1002/nme.1620220310
- Takahashi, K., Tsunoi, S., Hara, T., Ueno, T., Mikami, A., Takada, H., Ando, K. and Shiratori, M. (2010), "Experimental study of low-cycle fatigue of pipe elbows with local wall thinning and life estimation using finite element analysis", Int. J. Pres. Ves. Pip., 87, 211-219. https://doi.org/10.1016/j.ijpvp.2010.03.022
- Vishnuvardhan, S., Raghava, G., Gandhi, P., Goyal, S., Gupta, S.K. and Bhasin, V. (2013), "Ratcheting strain assessment in pressurized stainless steel elbows subjected to in-plane bending", Procedia Eng., 55, 666-670. https://doi.org/10.1016/j.proeng.2013.03.312
Cited by
- Evaluation of AF type cyclic plasticity models in ratcheting simulation of pressurized elbow pipes under reversed bending vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.703
- Ratcheting Behavior of Weld Joints Under Uniaxial Cyclic Loading Using Miniature Specimen pp.1995-8196, 2018, https://doi.org/10.1007/s12209-018-0160-8
- Ratcheting Effect of Pressurized 90° Elbow Pipe under In-Plane Opening, Closing, and Reverse Bending vol.10, pp.2, 2019, https://doi.org/10.1061/(ASCE)PS.1949-1204.0000369
- Evaluation of limit load analysis for pressure vessels - Part I: Linear and nonlinear methods vol.22, pp.6, 2016, https://doi.org/10.12989/scs.2016.22.6.1391
- Evaluation of limit load analysis for pressure vessels - Part II: Robust methods vol.23, pp.1, 2016, https://doi.org/10.12989/scs.2017.23.1.131
- Effects of temperature on the ratcheting behavior of pressurized 90° elbow pipe under force controlled cyclic loading vol.19, pp.5, 2016, https://doi.org/10.12989/sss.2017.19.5.473
- Local ratcheting behavior in notched 1045 steel plates vol.28, pp.1, 2016, https://doi.org/10.12989/scs.2018.28.1.001
- Ratcheting behavior of pressurized lateral nozzle of cylinder with local wall thinning under different loading paths vol.117, pp.None, 2016, https://doi.org/10.1016/j.engfailanal.2020.104947