DOI QR코드

DOI QR Code

A Study on the Nitrate Removal in Water by Chelating Bond of Calcium Alginate

Calcium Alginate의 킬레이트 결합을 이용한 수중의 질산성 질소 제거에 관한 연구

  • Kim, Tae Kyeong (Division of Civil, Environmental and Chemical Engineering, Changwon National University) ;
  • Song, Ju Young (Division of Civil, Environmental and Chemical Engineering, Changwon National University) ;
  • Kim, Jong Hwa (Division of Civil, Environmental and Chemical Engineering, Changwon National University)
  • 김태경 (창원대학교 토목환경화공융합공학부) ;
  • 송주영 (창원대학교 토목환경화공융합공학부) ;
  • 김종화 (창원대학교 토목환경화공융합공학부)
  • Received : 2016.08.15
  • Accepted : 2016.12.29
  • Published : 2016.12.30

Abstract

This study is on the denitrification process using the sodium alginate and $CaCl_2$ as a flocculant. Removal techniques of nitrate nitrogen from waste water are reverse osmosis, ion exchange, electro dialysis and biological method etc. We tried to remove nitrate nitrogen with flocculation and sedimentation method in the present study. Calcium alginate is expected to form a chelate bond with nitrate nitrogen in the solution. So the effects of flocculantt component, flocculation reaction time, molar ratio of the flocculant, flocculant injection rate are studied to determine the best removal rate of nitrate nitrogen. In addition, we tried to determine the nitrate nitrogen removal mechanism by analyzing the structure and component ratio of the configuration after the agglutination precipitate by FE-SEM and EDS. As a result, the nitrate nitrogen removal mechanism is turned out to form calcium-nitro-alginate, and the best mole ratio of flocculating agent is 1 : 1, the injection rate of the flocculant was up to 2%, the removal rate of the nitrate nitrogen to be 56.7% in the synthetic wastewater.

본 연구는 응집제로 calcium alginate를 이용한 질산성 질소 처리에 관한 연구이다. 질산성 질소를 제거하기 위한 방법으로는 역삼투법, 이온교환수지법, 전기투석법, 생물학적 방법 등이 있지만 본 연구에서는 응집 침전시키는 방법으로서 질산성 질소를 처리하고자 하였다. 응집제로 이용한 calcium alginate가 킬레이트 결합을 형성하여 질산성 질소를 응집 침전시킬 것으로 예상하고, 응집제의 성분, 응집 반응시간, 응집제의 몰비, 응집제의 주입율에 따라 질산성 질소가 제거되는 경향을 보았다. 또한 FE-SEM과 EDS(Energy Dispersive X-Ray Spectrometer)를 통하여 응집반응 후 침전물의 구조 및 구성성분비를 분석함으로써 질산성 질소가 Calcium-nitro-alginate 형태로 제거되는지를 확인하였다. 그 결과 반응시간은 60분, 응집제의 몰비는 1:1일 때, 응집제의 주입율은 합성폐수의 2 %일 때 질산성 질소의 제거율이 최대 56.7 %로 나타났다.

Keywords

References

  1. M. Mohsenipour, S. Shahid and K. Ebrahimi, Removal Techniques of Nitrate from Water, Asian Journal of Chemistry, 26(23), 7881-7886, (2014). https://doi.org/10.14233/ajchem.2014.17136
  2. K. C. Cho, M. H. Lee, J. H. Park and J. T. Jung, A Study on Removal of Dissolved Organic Matter and Phosphorus in Eutrophic Lake by Coagulation Process Using Powdered Activated Carbon, Korean Wetlands Society, 14(4), 629-635, (2012).
  3. C. M. Oh and T. S. Hwang, Synthesis and Functionalized Conditions of Quaternized Poly(vinylimidazole-co-trifluoroethyl methacrylate-co-divinylbenzene) Anion Exchange Membrane, Polymer(Korea), 39(1), 157-164, (2015).
  4. G. T. Jeong, S. H. Park, J. H. Park, S. H. Bhang, E. T. Lim and D. H. Park, Study of Factors Influenced on denitrification in wastewater treatment, Korean J. Biotechnol. Bioeng., 23(6), 535-540, (2008).
  5. J. K. Cho, Characteristics of Nitrogen and Phosphorus Removal by Olivine, Journal of Korean Society of Urban Environment, 10(3), 247-252, (2010).
  6. B. Ji, H. Wang ,and K. Yang, Nitrate and COD removal in an upflow biofilter under an aerobic atmosphere, Bioresource Technology, 158, 156-160, (2014). https://doi.org/10.1016/j.biortech.2014.02.025
  7. S. S. Choi, J. H. Choi, M. J. Kim, Y. S. Lee, J. H. Ha and H. J. Cha, Enhancement of Nitrate Removal Ability in Aqueous Phase Using Ulmus davidiana Bark for Preventing Eutrophication, Appl. Chem. Eng., 26(5), 604-608, (2015). https://doi.org/10.14478/ace.2015.1086
  8. S. M. Lee and W. H. Yoon, Characteristics of Nitrate Nitrogen and Phosphate Removals by Alumina Cement, Journal of Korean Society of Urban Environment, 12(1), 35-42, (2012).
  9. A. Sowmya and S. Meenakshi, Effective removal of nitrate and phosphate anions from aqueous solutions using functionalised chitosan beads, Desalination and Water Treatment, 52, 2583-2593, (2014). https://doi.org/10.1080/19443994.2013.798842
  10. E. T. Lim, G. T. Jeong, S. H. Bang, Y. U. Kim, J. H. Park, S. H. Park and D. H. Park, Practical Demonstration of YPNR Process to Elimination the Total Nitrogen Ingredient in Sewage, KSBB Journal, 24, 291-295, (2009).
  11. K. D. Seung, W. R. Ryu, I. H. Kim and M. H. Cho, Removal of Ammonia Nitrogen and Organics from Piggery Wastewater using BACC Process -II. Effect of COD/N on Removal of Nitrogen and Organics, Korean J. Biotechnol. Bioeng., 16(2), 140-145, (2001).
  12. Y. H. Seon, A Study on Removal of Organics, Nitrogen and Phosphorus of Domestic Wastewater in Pilot-Scale Upflow Packed Bed Column Reactor, Korean J. Biotechnol. Bioeng., 22(4), 191-196, (2007).
  13. J. H. Sim, S. H. Kang and H. J. Seo, Study on the Improvement of Nitrate Removal Dfficiency in Multi-Step Electro-chemical Process, J. of KSEE, 30(2), 155-160, (2008).
  14. J. K. Lee, D. Y. Kim and Y. S. Tak, Transformation of Nitrogen in the Form of Nitrate into Ammonia by Electrochemical Reaction, Korean Chem. Eng. Res., 46(5), 1013-1016, (2008).
  15. Y. G. Kim and I. H. Cho, A Study on the Removal of Nitrogen and Phosphorus of Municipal Wastewater with Biological Coated Media, Korean Journal of Environmental Health, 32(1), 27-35, (2006).
  16. E. Y. Jo, S. M. Park, I. S. Yeo, J. S. Moon, J. Y. Park, J. C. Kim, Y. S. Kim and C. H. Park, Study on the Removal Efficiency of Nitrogen and Phosphorus in Wastewater Treatment System Using Magnetite Powder, Journal of Fluid Machinery, 18(2), 43-47, (2015).
  17. F. Sun, B. Sun, J. Hu, Y. He and W. Wu, Organics and nitrogen removal from textile auxiliaries wastewater with $A^2O$-MBR in a pilot-scale, Journal of Hazardous Materials, 286, 416-424, (2015). https://doi.org/10.1016/j.jhazmat.2015.01.031
  18. Y. S. Sun, A. L. Li, H. H. Ren, X. P. Zhang and C. Wang, Removal of residual nitrate ion from bioactive calcium silicate through soaking, Chinese Chemical Letters, 27, 579-582, (2016). https://doi.org/10.1016/j.cclet.2016.02.018
  19. C. G. Kim, Removal of Ammonium and Nitrate Nitrogens from Wastewater using Zeolite, Korea Organic Resource Recycling Association, 24(1), 59-63, (2016).
  20. M. H. Jang, H. J. Kim, Y. D. Kim, C. H. Park, M. H. Lee, S. W. Eom and M. Y. Kim, Comparison and Evaluation of Manual and Automated Methods for Measurement of Total Nitrogen and Total Phosphorus in Aquatic Environmental Samples, Report of S.I.H.E, 45, 161-170, (2009).

Cited by

  1. 전기화학처리와 HClO 처리를 통한 폐수중 COD, 총인, 총질소의 저감에 대한 연구 vol.34, pp.3, 2017, https://doi.org/10.12925/jkocs.2017.34.3.436
  2. 아연볼의 산화·환원 반응을 통한 연속식 질산성질소 처리에 관한 연구 vol.34, pp.3, 2016, https://doi.org/10.12925/jkocs.2017.34.3.487
  3. Nitrate removal from water phase using Robinia pseudoacacia bark for solving eutrophication vol.36, pp.9, 2016, https://doi.org/10.1007/s11814-019-0331-x