DOI QR코드

DOI QR Code

Ferric Chloride Addition Enhances Performance of Bioelectrochemical Anaerobic Digestion of Sewage Sludge at Ambient Temperature

제2철 이온을 이용한 상온조건에서 하수슬러지의 생물전기화학 혐기성소화 성능향상

  • Feng, Qing (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Jang, Seong-Ho (Department of Bioenvironmental Energy, Pusan National University)
  • 풍경 (한국해양대학교 환경공학과) ;
  • 송영채 (한국해양대학교 환경공학과) ;
  • 장성호 (부산대학교 바이오환경에너지학과)
  • Received : 2016.10.18
  • Accepted : 2016.11.28
  • Published : 2016.11.30

Abstract

The influence of ferric ion ($Fe^{+3}$) on bioelectrochemical anaerobic digestion for sewage sludge was explored at ambient temperature ($25^{\circ}C$). Before the addition of ferric ion, the removal of volatile solids (VS) was 65.9% and the specific methane production rate was 370 mL/L/d. After the addition of ferric ion (200 ppm) to feed sludge, the bioelectrochemical anaerobic digester was more stable in the state variables including pH, alkalinity, COD and VFAs, and the VS removal and specific methane production rate were increased to 69.8% and 396 mL/L/d, respectively. However, the methane content in biogas was slightly reduced by the addition of ferric ion, indicating that the activity of planktonic anaerobic bacteria (PAB) was more improved after the addition of ferric ion. The dominances of syntrophic bacteria (Cloacamonas) and hyrolytic bacteria (Saprospiraceae, Ottowia pentelensis) in the PAB were increased by the addition of ferric ion. The addition of ferric ion improved the performance of bioelectrochemical anaerobic digestion for sewage sludge at ambient temperature.

상온조건($25^{\circ}C$)에서 하수슬러지처리를 위한 생물전기화학 혐기성소화조의 성능에 미치는 제2철 이온($Fe^{+3}$)의 영향을 연구하였다. 생물전기화학 혐기성소화조를 상온에서 운전하였을 때 pH, 알카리도, COD 및 VFAs 등의 상태변수들은 안정하였으며, VS 제거율과 비메탄발생율은 각각 65.9% 및 370 mL/L/d이었다. 생물전기화학 혐기성소화조에 제2철 이온(200 ppm)을 주입한 후 상태변수들의 안정도는 더욱 향상되었으며, VS 제거율 및 비메탄발생량은 각각 69.8%, 396 mL/L/d로 증가하였다. 그러나, 제2철 이온을 주입 이후에 바이오가스의 메탄함량은 76.6%로 주입 이전의 77.3%에서 비하여 약간 감소하였다. 부유슬러지의 미생물 군집을 변화를 분석한 결과 공생 혐기성미생물(Cloacamonas) 및 가수분해균(Saprospiraceae, Ottowia pentelensis) 등의 우점균의 비율이 제2철 이온의 주입으로 증가하였다. 이것은 철이온의 주입으로 부유혐기성미생물(planktonic anaerobic bacteria, PAB)의 활성이 증가하였음을 나타낸다. 제2철 이온은 상온조건에서 하수슬러지처리를 위한생물전기화학 혐기성소화조의 성능을 향상시킨다.

Keywords

References

  1. Song, Y. C., Kwon, S. J. and Woo, J. H., "Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge," Water Res., 38(7), 1653-1662(2004). https://doi.org/10.1016/j.watres.2003.12.019
  2. Jain, S., Jain, S., Wolf, I. T., Lee, J. and Tong, Y. W., "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renew. Sust. Energ. Rev., 52, 142-154(2015). https://doi.org/10.1016/j.rser.2015.07.091
  3. Liu, D., Zhang, L., Chen, S., Buisman, C. and Heijne, A. T., "Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at $10^{\circ}C$," Water Res., 99, 281-287(2016). https://doi.org/10.1016/j.watres.2016.04.020
  4. Feng, Q. and Song, Y. C., "Surface modification of a graphite fiber fabric anode for enhanced bioelectrochemical methane production," Energ. Fuel., 30, 6467-6474(2016). https://doi.org/10.1021/acs.energyfuels.6b00959
  5. Sasaki, K., Morita, M., Sasaki, D., Hirano, S., Matsumoto, N., Watanabe, A., Ohmura, N. and Igarashi, Y., "A bioelectrochemical reactor containing carbon fiber texiles enables efficient methane fermentation from garbage slurry," Bioresour. Technol., 102(13), 6837-6842(2011). https://doi.org/10.1016/j.biortech.2011.04.022
  6. Tartakovsky, B., Mehta, P., Bourque, J. S. and Guiot, S. R., "Electrolysis-enhanced anaerobic digestion of wastewater," Bioresour. Technol., 102(10), 5685-5691(2011). https://doi.org/10.1016/j.biortech.2011.02.097
  7. Villano, M., Monaco, G., Aulenta, F. and Majone, M., "Electrochemically assisted methane production in a biofilm reactor," J. Power Sources, 196(22), 9467-9472(2011). https://doi.org/10.1016/j.jpowsour.2011.07.016
  8. Song, Y. C., Feng, Q. and Ahn, Y. T., "Performance of the bio-electrochemical anaerobic digestion of sewage sludge at different hydraulic retention times," Energ. Fuel., 30(1). 352-359(2016).
  9. Feng, Q., Song, Y. C. and Bae, B. U., "Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature," Bioresour. Technol., 220, 500-508(2016). https://doi.org/10.1016/j.biortech.2016.08.085
  10. Larrosa-Guerrero, A., Scott, K., Head, I. M., Mateo, F., Ginesta, A. and Godinez, C., "Effect of temperature on the performance of microbial fuel cells," Fuels, 89(12), 3985-3994 (2010). https://doi.org/10.1016/j.fuel.2010.06.025
  11. Bao, Y., Ziyang, L., Dongling, Z., Aidang, S., Haiping, Y., Nanwen, Z. and Kanghan, Z., "Variations of organic matters and microbial community in thermophilic anaerobic digestion of waste activated sludge with the addition of ferric salts," Bioresour. Technol., 179, 291-298(2015). https://doi.org/10.1016/j.biortech.2014.12.011
  12. Karlsson, A., Einarsson, P., Schnurer, A., Sundberg, C., Ejlertsson, J. and Svensson, B. H., "Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester," J. Biosci. Bioeng., 114(4), 446-452(2012). https://doi.org/10.1016/j.jbiosc.2012.05.010
  13. Gustavsson, J., Yekta, S. S., Sundberg, C., Karlsson, A., Ejlertsson, J., Skyllberg, U. and Svensson, B. H., "Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation," Appl. Energ., 112, 473-477 (2013). https://doi.org/10.1016/j.apenergy.2013.02.009
  14. Zhang, J., Zhang, Y., Quan, X. and Chen, S., "Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC)-Anaerobic reactor," Water Res., 47(15), 5719-5728(2013). https://doi.org/10.1016/j.watres.2013.06.056
  15. Kim, D. H., Song, Y. C. and Feng, Q., "Influence of Applied Voltage for Bioelectrochemical Anaerobic Digestion of Sewage Sludge," J. Korean Soc. Environ. Eng., 37(9), 542-549(2015). https://doi.org/10.4491/KSEE.2015.37.9.542
  16. Chun, J., Kim, K. Y., Lee, J. H. and Choi, Y., "The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX titanium pyrosequencer," BMC Microbiol., 10, 101(2010). https://doi.org/10.1186/1471-2180-10-101
  17. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S. and Chun, J., "Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species," Int. J. Syst. Evol. Microbiol., 62, 716-721 (2012). https://doi.org/10.1099/ijs.0.038075-0
  18. Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J. and Glackner, F. O., "SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB," Nucleic Acids Res., 35, 7188-7196(2007). https://doi.org/10.1093/nar/gkm864
  19. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. and Weber, C. F., "Introducing mothur: open source, platform-independent, communitysupported software for describing and comparing microbial communities," Appl. Environ. Microbiol., 75, 7537-7541(2009). https://doi.org/10.1128/AEM.01541-09
  20. Wang, L., Liu, L., Zheng, B., Zhu, Y. and Wang, X., "Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing," Mar. Pollut. Bull., 72, 181-187(2013). https://doi.org/10.1016/j.marpolbul.2013.04.005
  21. Padilla-Gasca, E., Lopez-Lopez, A. and Gallardo-Valdez, J., "Evaluation of Stability Factors in the Anaerobic Treatment of Slaughterhouse Wastewater," J. Biorem. Biodegrad., 2 (114), 2155-6199(2011).
  22. Feng, Q., Song, Y. C., Yoo, K., Lal, B., Kuppanan, N., Subudhi, S. and Choi, T. S., "Performance of Upflow Anaerobic Bioelectrochemical Reactor Compared to the Sludge Blanket Reactor for Acidic Distillery Wastewater Treatment," J. Korean Soc. Environ. Eng., 38(6): 279-290(2016). https://doi.org/10.4491/KSEE.2016.38.6.279
  23. Feng, Q. and Song, Y. C., Decoration of graphite fiber fabric cathode with electron transfer assisting material for enhanced bioelectrochemical methane production, J. Appl. Electrochem., doi:10.1007/s10800-016-1003-8(2016).
  24. Eric, P., Annett, K., Stephanie, B., Zoe, R., Gabor, G., Rakia, C., Delphine, R., Akila, G., Patrick, D., Abdelghani, S., Georges, N. C., Claudine, M., Jean, W. and Denis, Le P., "'Candidatus Cloacamonas Acidaminovorans': Genome Sequence Reconstruction Provides a First Glimpse of a New Bacterial Division," J. Bacteriol., 190(7), 2572-2579(2008). https://doi.org/10.1128/JB.01248-07