DOI QR코드

DOI QR Code

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R. (Davidson Laboratory, Stevens Institute of Technology) ;
  • Dastgheib, A. (UNESCO-IHE) ;
  • Roelvink, D. (UNESCO-IHE) ;
  • Barry, D.A. (Laboratoire de technologie ecologique, Institut d'ingenierie de l'environnement, Faculte de l'environnement naturel, architectural et construit (ENAC))
  • Received : 2015.07.01
  • Accepted : 2016.02.09
  • Published : 2016.03.25

Abstract

The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Keywords

Acknowledgement

Supported by : Swiss National Foundation

References

  1. Absi, R. (2010), "Concentration profiles for fine and coarse sediments suspended by waves over ripples: An analytical study with the 1-DV gradient diffusion mode", Adv. Water Resour., 33(4), 411-418. https://doi.org/10.1016/j.advwatres.2010.01.006
  2. Allard, R., Dykes, J., Hsu, Y.L., Kaihatu, J. and Conley, D. (2008), "A real-time nearshore wave and current prediction system", J. Marine. Syst., 69(1-2), 37-58. https://doi.org/10.1016/j.jmarsys.2007.02.020
  3. Apotsos, A., Jaffe, B. and Gelfenbaum, G. (2011), "Wave characteristic and morphologic effects on the onshore hydrodynamic response of tsunamis", Coast. Eng., 58(11), 1034-1048. https://doi.org/10.1016/j.coastaleng.2011.06.002
  4. Austin, M.J. and Masselink, G. (2006), "Observations of morphological change and sediment transport on a steep gravel beach", Mar. Geol., 229(1-2), 59-77. https://doi.org/10.1016/j.margeo.2006.02.003
  5. Bakhtyar, R., Barry, D.A., Li, L., Jeng, D.S. and Yeganeh-Bakhtiary, A. (2009a), "Modeling sediment transport in the swash zone: A review", Ocean Eng., 36, 767-783. https://doi.org/10.1016/j.oceaneng.2009.03.003
  6. Bakhtyar, R., Barry, D.A., Yeganeh-Bakhtiary, A. and Ghaheri, A. (2009b), "Numerical simulation of surf-swash zone motions and turbulent flow", Adv. Water Resour., 32(2), 250-263. https://doi.org/10.1016/j.advwatres.2008.11.004
  7. Bakhtyar, R., Ghaheri, A., Yeganeh-Bakhtiary, A. and Barry, D.A. (2009c), "Process-based model for nearshore hydrodynamics, sediment transport and morphological evolution in the surf and swash zones", Appl. Ocean Res., 31(1), 44-56. https://doi.org/10.1016/j.apor.2009.05.002
  8. Bakhtyar, R., Yeganeh-Bakhtiary, A, Barry, D.A. and Ghaheri, A. (2009d), "Euler-Euler coupled two-phase flow modeling of sheet flow sediment motion in nearshore", J. Coast. Res., 56, 467-471.
  9. Bakhtyar, R., Yeganeh-Bakhtiary, A., Barry, D.A. and Ghaheri, A. (2009e), "Two-phase hydrodynamic and sediment transport modeling of wave-generated sheet flow", Adv. Water Resour., 32(8), 1267-1283. https://doi.org/10.1016/j.advwatres.2009.05.002
  10. Bakhtyar, R., Barry, D.A., Yeganeh-Bakhtiary, A., Li, L., Parlange, J.Y. and Sander, G.C. (2010a), "Numerical simulation of two-phase flow for sediment transport in the inner surf and swash zones", Adv. Water Resour., 33(3), 277-290. https://doi.org/10.1016/j.advwatres.2009.12.004
  11. Bakhtyar, R., Razmi, A.M., Barry, D.A., Yeganeh-Bakhtiary, A. and Zou, Q.P. (2010b), "Air-water two-phase flow model of turbulent surf and swash zone wave motions", Adv. Water Resour., 33(12), 1560-1574. https://doi.org/10.1016/j.advwatres.2010.09.007
  12. Bakhtyar, R., Brovelli, A., Barry, D.A. and Li, L. (2011), "Wave-induced watertable fluctuations, sediment transport and beach profile change: Modeling and comparison with large-scale laboratory experiments", Coast. Eng., 58(1), 103-118. https://doi.org/10.1016/j.coastaleng.2010.08.004
  13. Bakhtyar, R., Barry, D.A. and Brovelli, A. (2012a), "Numerical experiments on interactions between wave motion and variable-density coastal aquifers", Coast. Eng., 60, 95-108. https://doi.org/10.1016/j.coastaleng.2011.09.001
  14. Bakhtyar, R., Barry, D.A. and Kees, C.E. (2012b), "Numerical experiments of breaking waves on contrasting beaches using a two-phase flow method", Adv. Water Resour., 48, 68-78. https://doi.org/10.1016/j.advwatres.2012.03.025
  15. Bakhtyar, R., Brovelli, A., Barry, D.A., Robinson, C. and Li, L. (2013a), "Transport of variable-density solute plumes in beach aquifers in response to oceanic forcing", Adv. Water Resour., 53, 208-224. https://doi.org/10.1016/j.advwatres.2012.11.009
  16. Bakhtyar, R., Razmi, A. Barry, D.A., Kees, C.E., Yeganeh-Bakhtiary, A. and Miller, C.T. (2013b), "Two-phase flow modeling of the influence of wave shapes and bed slope on nearshore hydrodynamics", J. Coastal. Res., I65, 159-164.
  17. Choi, D.Y. and Wu, C.H. (2006), "A new efficient 3D non-hydrostatic free-surface flow model for simulating water wave motions", Ocean Eng., 33(5-6), 587-609. https://doi.org/10.1016/j.oceaneng.2005.06.002
  18. Christensen, E.D. (2006), "Large eddy simulation of spilling and plunging breakers", Coast. Eng., 53(5-6), 463-485. https://doi.org/10.1016/j.coastaleng.2005.11.001
  19. Conley, D.C., Falchetti, S., Lohmann, I.P. and Brocchini, M. (2008), "The effects of flow stratification by non-cohesive sediment on transport in high-energy wave-driven flows", J. Fluid Mech., 610, 43-67.
  20. Dastgheib, A., Roelvink, J.A. and Wang, Z.B. (2008), "Long-term process-based morphological modeling of the Marsdiep Tidal Basin", Mar. Geol., 256(1-4), 90-100. https://doi.org/10.1016/j.margeo.2008.10.003
  21. Dastgheib, A. (2012), Long-term Process-based Morphological Modelling of Large Tidal Basins PhD thesis, 978-1-138-00022-3UNESCO-IHE Institute for Water Education.
  22. Delft3D-Flow User Manual, (2009), Version: 3.15, Revision: 17474, http://delftsoftware.wldelft.nl/index.php?option=com_docman&task=cat_view&gid=39&Itemid=61, last accessed 1 October 2015.
  23. Elfrink, B. and Baldock, T.E. (2002), "Hydrodynamics and sediment transport in the swash zone: A review and perspectives", Coast. Eng., 45(3-4), 149-167. https://doi.org/10.1016/S0378-3839(02)00032-7
  24. Elias, E.P.L., Cleveringa, J., Buijsman, M.C., Roelvink, J.A. and Stive, M.J.F. (2006), "Field and model data analysis of sand transport patterns in Texel Tidal inlet (the Netherlands)", Coast. Eng., 53(5-6), 505-529. https://doi.org/10.1016/j.coastaleng.2005.11.006
  25. Elias, E.P.L., Walstra, D.J.R., Roelvink, J.A., Stive, M.J.F. and Klein, M.D. (2000), "Hydrodynamic validation of Delft3D with field measurements at Egmond", Proceedings of the 27th International Conference on Coastal Engineering, (Ed., Billy L. Edge), Sydney, Australia.
  26. Elias, E.P.L. (1999), The Egmond Model: Calibration, validation and evaluation of Delft3D-MOR with field measurements, MSc thesis, Delft University of Technology, The Netherlands. http://resolver.tudelft.nl/uuid:4764c864-12ba-4759-ae13-ee1c3170dfff, last accessed 1 October 2015.
  27. Feddersen, F. (2012), "Observations of the surf-zone turbulent dissipation rate", J. Phys. Oceanogr., 42(3), 386-399. https://doi.org/10.1175/JPO-D-11-082.1
  28. Fredsoe, J. (1993), "Modelling of non-cohesive sediment transport processes in the marine environment", Coast. Eng., 21, 71-103. https://doi.org/10.1016/0378-3839(93)90046-B
  29. Geleynse, N., Storms, J.E.A., Stive, M.J.F., Jagers, H.R.A. and Walstra, D.J.R. (2010), "Modeling of a mixed-load fluvio-deltaic system", Geophys. Res. Lett., 37, L05402, doi:10.1029/2009GL042000.
  30. Geleynse, N., Storms, J.E.A., Walstra, D.J.R., Jagers, H.R.A., Wang, Z.B. and Stive, M.J.F. (2011), "Controls on river delta formation; insights from numerical modeling", Earth Planet. Sci. Lett., 302(1-2), 217-226. https://doi.org/10.1016/j.epsl.2010.12.013
  31. Grasso, F., Michallet, H. and Barthelemy, E. (2011), "Sediment transport associated with morphological beach changes forced by irregular asymmetric, skewed waves", J. Geophys. Res., 116, C03020, doi:10.1029/2010JC006550.
  32. Guza, R.T., Inman, D.L. (1975), "Edge waves and beach cusps", J. Geophys. Res., 80, 2997-3012. https://doi.org/10.1029/JC080i021p02997
  33. Haas, K.A., Svendsen, I.A., Haller, M.C. and Zhao, Q. (2003), "Quasi-three dimensional modeling of rip current systems", J. Geophys. Res., 108, 3217, doi:10.1029/2002JC001355.
  34. Horn, D. and Li, L. (2006), "Measurement and modeling of gravel beach groundwater response to wave run-up: Effects on beach profile changes", J. Coastal. Res., 22(5), 1241-1249. https://doi.org/10.2112/06A-0006.1
  35. Horn, D.P., Baldock, T.E. and Li, L. (2007), "The influence of groundwater on profile evolution of fine and coarse sand beaches", Proceedings of the Coastal Sediments '07, ASCE, New Orleans, USA.
  36. Hsu, Y.L., Dykes, J.D., Allard, R.A. and David, D.W. (2008), Validation test report for Delft3D. NRL memorandum report, NRL/MR/7320-08-9079, 42 pp., Naval Research Laboratory, Stennis Space Center, Mississippi, USA.
  37. Hu, K., Ding, P., Wang, Z. and Yang, S. (2009), "A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary", China J. Mar. Sys., 77, 114-136. https://doi.org/10.1016/j.jmarsys.2008.11.014
  38. Karambas, T.V. (2006), "Prediction of sediment transport in the swash zone by using a nonlinear wave mode", Cont. Shelf Res., 26(5), 599-609. https://doi.org/10.1016/j.csr.2006.01.014
  39. Kumar, V.S., Anand, N.M., Chandramohan, P. and Naik, G.N. (2003), "Longshore sediment transport rate-Measurement and estimation, central west coast of India", Coast. Eng., 48, 95-109. https://doi.org/10.1016/S0378-3839(02)00172-2
  40. Lamb, M.P., D'Asaro, E. and Parsons, J.D. (2004), "Turbulent structure of high-density suspensions formed under waves", J. Geophys. Res., 109, C12026, doi:10.1029/2004JC002355.
  41. Larson, M., Kubota, S. and Erikson, L. (2004), "Swash-zone sediment transport and foreshore evolution: Field experiments and mathematical modeling", Mar. Geol., 212(1-4), 61-80. https://doi.org/10.1016/j.margeo.2004.08.004
  42. Lesser, G.R., Roelvink, J.A., Van Kester, J.A.T.M. and Stelling, G.S. (2004), "Development and validation of a three-dimensional mode", Coast. Eng., 51, 883-915. https://doi.org/10.1016/j.coastaleng.2004.07.014
  43. Li, L., Barry, D.A., Pattiaratchi, C.B. and Masselink, G. (2002), "BeachWin: Modelling groundwater effects on swash sediment transport and beach profile changes", Environ. Modell. Softw., 17(3), 313-320. https://doi.org/10.1016/S1364-8152(01)00066-4
  44. Longuet-Higgins, M.S. (1970), "Longshore currents generated by obliquely incident sea waves", J. Geophys. Res., 75, 6778-6789. https://doi.org/10.1029/JC075i033p06778
  45. MacMahan, J.H., Thornton, Ed.B. and Reniers, Ad.J.H.M. (2006), "Rip current review", Coast. Eng., 53(2-3), 191-208. https://doi.org/10.1016/j.coastaleng.2005.10.009
  46. Malvarez, G.C. and Cooper, A. (2000), "A whole surf zone modelling approach as an aid to investigation of nearshore and coastal morphodynamics", J. Coastal. Res., 16(3), 800-815.
  47. Masselink, G., Evans, D., Hughes, M.G. and Russell, P.E. (2005), "Suspended sediment transport in the swash of a dissipative beach", Mar. Geol., 216(3), 169-189. https://doi.org/10.1016/j.margeo.2005.02.017
  48. Miles, J., Butt, T. and Russell, P. (2006), "Swash zone sediment dynamics: A comparison of a dissipative and an intermediate beach", Mar. Geol., 231(1-4), 181-200. https://doi.org/10.1016/j.margeo.2006.06.002
  49. Mo, W., Jensen, A. and Liu, P.L.F. (2013), "Plunging solitary wave and its interaction with a slender cylinder on a sloping beach", Ocean Eng., 74, 48-60. https://doi.org/10.1016/j.oceaneng.2013.09.011
  50. Newberger, P.A. and Allen, J.S. (2007a), "Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 1. Formulation", J. Geophys. Res., 112(8), C08018, doi:10.1029/2006JC003472.
  51. Newberger, P.A. and Allen, J.S. (2007b), "Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94", J. Geophys. Res., 112(8), C08019, doi:10.1029/2006JC003474.
  52. Nielsen, P. (1992), "Coastal bottom boundary layers and sediment transport", Adv. Ser. Ocean Eng., 4, World Sci., Singapore.
  53. Ozkan-Haller, H.T. and Li, Y. (2003), "Effects of wave-current interaction on shear instabilities of longshore currents", J. Geophys. Res., 108, 3139, doi:10.1029/2001JC001287.
  54. Razmi, A.M., Bakhtyar, R. and Barry, D.A. (2011), "Numerical simulation of two-phase flow for nearshore hydrodynamics under wave-current interactions", J. Coastal. Res., 64, 1165-1169.
  55. Reichmuth, B. and Anthony, E.J. (2002), "The variability of ridge and runnel beach morphology: Examples from Northern France", J. Coastal. Res., 36, 612-621. https://doi.org/10.2112/1551-5036-36.sp1.612
  56. Reniers, A.J.H.M., Roelvink, J.A. and Thornton, E.B. (2004), "Morphodynamic modeling of an embayed beach under wave group forcing", J. Geophys. Res., 109, C01030, doi:10.1029/2002JC001586.
  57. Robinson, C., Brovelli, A., Barry, D.A. and Li, L. (2009), "Tidal influence on BTEX biodegradation in sandy coastal aquifers", Adv. Water Resour., 32(1), 16-28. https://doi.org/10.1016/j.advwatres.2008.09.008
  58. Robinson, C.E., Li, L. and Barry, D.A. (2007), "Effect of tidal forcing on a subterranean estuary", Adv. Water Resour., 30(4), 851-865. https://doi.org/10.1016/j.advwatres.2006.07.006
  59. Rodi, W. (1980), Turbulence models and their application in hydraulics, a state of the art review, IAHR publication, Delft, The Netherlands.
  60. Roelvink, J.A. and Walstra, D.J.R. (2004), 'it simple by using complex models". Proceedings of the 6th International Conference on Hydro-Science and Engineering, Advances in Hydro-Science and Engineering, Brisbane, Australia.
  61. Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel de Vries, J., McCall, R. and Lescinski, R. (2009), "Modelling storm impacts on beaches, dunes and barrier islands", Coast. Eng., 56(11-12), 1133-1152. https://doi.org/10.1016/j.coastaleng.2009.08.006
  62. Roelvink, J.A. and Reniers, A.J.H.M. (2012), "A guide to modelling coastal morphology", Adv. Coast. Ocean Eng., 12, World Scientific Publications, Singapore.
  63. Ruessink, B.G. (1999), Coast3d main experiment: data summary of offshore wave and waterlevel conditions, subtidal morphology and UU maxi tripods. IMAU Report R99-09, Utrecht University.
  64. Ruessink, B.G., Van Enckevort, I.M.J, Kingston, K.S. and Davidson, M.A. (2000), "Analysis of observed two-and three-dimensional nearshore bar behavior", Mar. Geol., 169(1-2), 161-183. https://doi.org/10.1016/S0025-3227(00)00060-8
  65. Shen, Y.M., Ng, C.O. and Zheng, Y.H. (2004), "Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-epsilon turbulence modeling", Ocean Eng., 31(1), 87-95. https://doi.org/10.1016/S0029-8018(03)00111-2
  66. Soulsby, R.L. (2001), "Sediment transport and morphodynamics on complex coastlines-the COAST3D project", Coastal Dynamics '01, Proceedings of the 4th Conference on Coastal Dynamics, Lund Sweden, ASCE.
  67. Thornton, E.B., MacMahan, J. and Sallenger Jr., A.H. (2007), "Rip currents, mega-cusps, and eroding dunes", Mar. Geol., 240(1-4), 151-167. https://doi.org/10.1016/j.margeo.2007.02.018
  68. Tran, T.T., van de Kreeke, J., Stive, M.J.F. and Walstra, D.J.R. (2012), "Cross-sectional stability of tidal inlets: A comparison between numerical and empirical approaches", Coast. Eng., 60, 21-29. https://doi.org/10.1016/j.coastaleng.2011.08.005
  69. van Leeuwen, S.M., van der Vegt, M. and de Swart, H.E. (2003), "Morphodynamics of ebb-tidal deltas: A model approach", Estuar. Coast. Shelf Sci., 57, 899-907. https://doi.org/10.1016/S0272-7714(02)00420-1
  70. van der Wegen, M. and Roelvink, J.A. (2008), "Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based mode", J. Geophys. Res., 113, C03016, doi:10.1029/2006JC003983.
  71. van Duin, M.J.P. and Wiersma, N.R. (2002), Evaluation of the Egmond shoreface nourishment. Part 1: Data analysis, WL/Delft Hydraulics Report Z3054/Z3148, http://www.hydraulicengineering.tudelft.nl, last accessed 1 October 2015.
  72. van Rijn, L.C. (1997), "Sediment transport and budget of the central coastal zone of Holland", Coast. Eng., 32(1), 61-90. https://doi.org/10.1016/S0378-3839(97)00021-5
  73. van Rijn, L.C. (2011), Principles of sediment transport in rivers, estuaries and coastal seas, AQUA Publications, Amsterdam, The Netherlands.
  74. van Rijn, L.C., Tonnon, P.K. and Walstra, D.J.R. (2011), "Numerical modelling of erosion and accretion of plane sloping beaches at different scales", Coast. Eng., 58(7), 637-655. https://doi.org/10.1016/j.coastaleng.2011.01.009
  75. Xin, P., Robinson, C., Li, L., Barry, D.A. and Bakhtyar, R. (2010), "Effects of wave forcing on a subterranean estuary", Water Resour. Res., 46, W12505, doi:10.1029/2010WR009632.
  76. Zhao, Q., Svendsen, I.A. and Haas, K. (2003), "Three-dimensional effects in shear waves", J. Geophys. Res., 108, 3270, doi:10.1029/2002JC001306.