DOI QR코드

DOI QR Code

Enhanced Acetylcholinesterase Activity of the Indianmeal Moth, Plodia interpunctella, Under Chlorine Dioxide Treatment and Altered Negative Phototaxis Behavior

이산화염소 처리에 따른 화랑곡나방 아세틸콜린에스터레이즈 활성 증가와 음성주광성 행동 변화

  • Kim, Minhyun (Department of Bioresource Sciences, Andong National University) ;
  • Kwon, Hyeok (Department of Biosystems and Biotechnology, Korea University) ;
  • Kwon, yunsik (Department of Biosystems and Biotechnology, Korea University) ;
  • Kim, Wook (Department of Biosystems and Biotechnology, Korea University) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 김민현 (안동대학교 식물의학과) ;
  • 권혁 (고려대학교 바이오시스템공학과) ;
  • 권현식 (고려대학교 바이오시스템공학과) ;
  • 김욱 (고려대학교 바이오시스템공학과) ;
  • 김용균 (안동대학교 식물의학과)
  • Received : 2015.12.23
  • Accepted : 2016.02.01
  • Published : 2016.03.01

Abstract

Chlorine dioxide has been used as a disinfectant against microbial pathogens. Recently, its insecticidal activity has been known against stored insect pests by oxidative stress. However, any molecular target of the oxidative stress induced by chlorine dioxide has been not known in insects. This study assessed an enzyme activity of acetylcholinesterase (AChE) as a molecular target of chlorine dioxide in the Indianmeal moth, Plodia interpunctella. AChE activities were varied among developmental stages of P. interpunctella. Injection of chlorine dioxide with lethality-causing doses significantly increased AChE activity of the fifth instar larvae of P. interpunctella. Exposure of the larvae to chlorine dioxide fumigant also significantly increased AChE activity. The fifth instar larvae of P. interpunctella exhibited a negative phototaxis. However, chlorine dioxide treatment significantly interrupted the innate behavior. These results suggest that AChE is one of molecular targets of oxidative stress due to chlorine dioxide in P. interpunctella.

이산화염소는 병원미생물에 대한 소독제로 사용되고 있다. 최근 저곡해충에 대한 이산화염소의 산화적 스트레스에 의한 살충력이 확인되었다. 그러나 이산화염소의 산화적 스트레스에 의한 대상 곤충의 체내 분자 종말점에 대해서는 알려지지 않았다. 본 연구는 화랑곡나방(Plodia interpunctella)의 아세틸콜린에스터레이즈가 이산화염소의 분자표적으로 가정하고 노출에 따른 이 효소의 활성을 분석하였다. 아세틸콜린에스터레이즈 활성은 화랑곡나방 발육 시기에 따라 상이했다. 화랑곡나방 5령 유충에서 치사를 일으킬 수 있는 이산화염소 농도 처리는 아세틸콜린에스터레이즈 활성을 뚜렷하게 증가시켰다. 또한 훈증제 형태의 이산화염소 처리에서도 아세틸콜린에스터레이즈 활성 증가가 유발되었다. 화랑곡 나방 5령 유충은 음성주광성을 보이는 데, 이산화염소 처리는 이 선천성 행동을 교란하였다. 이러한 결과는 아세틸콜린에스터레이즈가 이산화염소 처리에 따른 산화적 스트레스의 분자표적 가운데 하나라는 것을 제시하고 있다.

Keywords

References

  1. Aung, E.E., Ueno, M., Zaitsu, T., Furukawa, S., Kawaguchi, Y., 2015. Effectiveness of three oral hygiene regimes on oral malodor reduction: a randomized clinical trial. Trials 16, 31. https://doi.org/10.1186/s13063-015-0549-9
  2. Bang, J., Hing, A., Kim, H., Beuchat, L.R., Rhee, M.S., Kim, Y., Ryu, J.H., 2014. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying. Int. J. Food Microbiol. 191, 129-134. https://doi.org/10.1016/j.ijfoodmicro.2014.09.014
  3. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye finding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Byrne, F.J., Toscano, N.C., 2001. An insensitive acetylcholinesterase confers resistance to methomyl in the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 94, 524-528. https://doi.org/10.1603/0022-0493-94.2.524
  5. Cha, D.J., Lee, S.H., 2015. Evolutionary origin and status of two insect acetylcholinesterase and their structural conservation and differentiation. Evol. Dev. 17, 109-119. https://doi.org/10.1111/ede.12111
  6. Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., Bondzic, A.M., Vasic, V.M., 2013. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol. 11, 315-335 https://doi.org/10.2174/1570159X11311030006
  7. Devonshire, A.L., 1975. Studies of the acetylcholinesterase from houseflies (Musca domestica L.) resistant and susceptible to organophosphorus insecticides. Biochem. J. 149, 463-469. https://doi.org/10.1042/bj1490463
  8. Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  9. Gibbs, S.G., Lowe, J.J., Smith, P.A., Hewlett, A.L., 2012. Gaseous chlorine dioxide as an alternative for bedbug control. Infect. Control Hosp. Epidemiol. 33, 495-499. https://doi.org/10.1086/665320
  10. Gordon, G., Rosenblatt, A.A., 2005. Chlorine dioxide: the current state of the art. Ozone Sci. Eng. 27, 203-207. https://doi.org/10.1080/01919510590945741
  11. Han, S.C., Kim, Y., Lee, J., Kang, S.Y., 1997. Variation in insecticide susceptibilities of the beet armyworm, Spodoptera exigua (Hubner): esterase and acetylcholinesterase activities. Kor. J. Appl. Entomol. 36, 172-178.
  12. He, G., Sun, Y., Li, F., 2012. RNA interference of two acetylcholinesterase genes in Plutella xylostella reveals their different functions. Arch. Insect Biochem. Physiol. 79, 75-86. https://doi.org/10.1002/arch.21007
  13. Hinenoya, A., Awasthi, S.P., Yasuda, N., Shima, A., Morino, H., Koizumi, T., Fukuta, T., Miura T, Shibata T, Yamasaki S. 2015. Chlorine dioxide is a superior disinfectant against multi-drug resistant Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii. Jpn. J. Infect. Dis. 68, 276-279. https://doi.org/10.7883/yoken.JJID.2014.294
  14. Huang J, Wang L, Nanqi R, and Junli H. 1997. Disinfection effect of chlorine dioxide on bacteria in water. Wat. Res. 31, 607-613. https://doi.org/10.1016/S0043-1354(96)00275-8
  15. Jin, M., Shan, J., Chen, Z., Guo, X., Shen, Z., Qiu, Z., Xue, B., Wang, Y., Zhu, D., Wang, X., Li, J., 2013. Chlorine dioxide inactivation of enterovirus 71 in water and its impact on genomic targets. Environ. Sci. Technol. 47, 4590-4597. https://doi.org/10.1021/es305282g
  16. Jin, Y., Liu, Z., Peng, T., Fu, Z., 2015. The toxicity of chlorpyrifos on the early life stage of zebrafish: a survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity. Fish Shellfish Immunol. 43, 405-414 https://doi.org/10.1016/j.fsi.2015.01.010
  17. Kim, Y., Park, J., Kumar, S., Kwon, H., Na, J., Chun, Y., Kim, W., 2015. Insecticidal activity of chlorine dioxide gas by inducing an oxidative stress to the red flour beetle, Tribolium castaneum. J. Stored Prod. Res. 64, 88-96. https://doi.org/10.1016/j.jspr.2015.09.001
  18. Kumar, S., Park, J., Kim, E., Na, J., Chun, Y.S., Kwon, H., Kim, W., 2015. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. Pesti. Biochem. Physiol. 124, 48-59. https://doi.org/10.1016/j.pestbp.2015.04.003
  19. Milatovic, D., Gupta, R.C., Aschner, M., 2006. Anticholinesterase toxicity and oxidative stress. Sci. World J. 28, 295-310.
  20. Nam, H., Seo, H.S., Bang, J., Kim, H., Beuchat, L.R., Ryu, J.H., 2014. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus attached to and in a biofilm on stainless steel. Int. J. Food Microbiol. 188, 122-127. https://doi.org/10.1016/j.ijfoodmicro.2014.07.009
  21. Ogata, N., 2007. Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues. Biochemistry 46, 4898-4911. https://doi.org/10.1021/bi061827u
  22. Ogata, N., 2012. Inactivation of influenza virus haemagglutinin by chlorine dioxide: oxidation of the conserved tryptophan 153 residue in the receptor-binding site. J. Gen. Virol. 93, 2558-2568. https://doi.org/10.1099/vir.0.044263-0
  23. Rutter, R.R., Ferkovich, S.M., 1973. A rapid separation of larvae of the Indianmeal moth from rearing medium. Ann. Entomol. Soc. Am. 66, 919-920. https://doi.org/10.1093/aesa/66.4.919
  24. Sanekata, T., Fukuda, T., Miura, T., Morino, H., Lee, C., Maeda, K. Araki, K., Otake, T., Kawahata, T., Shibata, T., 2010. Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol Sci. 15, 45-49. https://doi.org/10.4265/bio.15.45
  25. SAS Institute, Inc., 1989. SAS/STAT user's guide. SAS Institute, Inc., Cary, NC.
  26. Sun, X., Bai, J., Ference, C., Wang, Z., Zhang, Y., Narciso, J., Zhou, K., 2014. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries. J. Food Prot. 77, 1127-1132. https://doi.org/10.4315/0362-028X.JFP-13-554
  27. Taneja, S., Mishra, N., Malik, S., 2014. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: an in vitro study. J. Conserv. Dent. 17, 541-545. https://doi.org/10.4103/0972-0707.144590
  28. Vlad, S., Anderson, W.B., Peldszus, S., Huck, P.M., 2014. Removal of the cyanotoxin-a by drinking water treatment processes: a review. J. Water Health 12, 601-617. https://doi.org/10.2166/wh.2014.018
  29. Volk, C.J., Hofmann, R., Chauret, C., Gagnom, G.A., Ranger, G., Andrews, R.C., 2002. Implementation of chlorine dioxide disinfection: effects of the treatment change on drinking water quality in a full-scale distribution system. J. Environ. Eng. Sci. 1, 323-330. https://doi.org/10.1139/s02-026
  30. Yamchuen, P., Aimjongjun, S., Limpeanchob, N., 2014. Oxidized low density lipoprotein increases acetylcholinesterase activity correlating with reactive oxygen species production. Neurochem. Int. 78, 1-6. https://doi.org/10.1016/j.neuint.2014.07.007

Cited by

  1. Chlorine dioxide enhances lipid peroxidation through inhibiting calcium-independent cellular PLA 2 in larvae of the Indianmeal moth, Plodia interpunctella 2017, https://doi.org/10.1016/j.pestbp.2017.09.010