DOI QR코드

DOI QR Code

A Study on Spherical Convexity

구면볼록성에 관한 고찰

  • Jo, Kyeonghee (Division of Liberal Arts and Sciences, Mokpo National Maritime Univ.)
  • Received : 2016.10.06
  • Accepted : 2016.12.07
  • Published : 2016.12.31

Abstract

Spherical convexity may be defined in different ways. It depends on which statement we take as a definition among several statements that can be all used as a definition of convexity of subsets in an affine space. In this article, we consider this question from various perspectives. We compare several different definitions of spherical convexity which are found in mathematical papers. In particular, we focus our discussion on the definitions of J. P. $Benz{\acute{e}}cri$ and N. H. Kuiper who built a solid foundation for theory of convex bodies and convex affine(projective) structures on manifolds.

Keywords

References

  1. G. AUBRUN, M. FRADELIZI, Two-point symmetrization and convexity, Arch. Math. 82 (2004), 282-288. https://doi.org/10.1007/s00013-003-4839-1
  2. J. P. BENZECRI, Sur les varietes localement affines et projectives, Bull. Soc. Math. France 88 (1960), 229-332.
  3. F. J. COBOS et al, The width of a convex set on the sphere, Proceeding of the 9th Canadian Conference on Computational Geometry, Kingston, Ontarlo, Canada, Aug. 11-14, 1997.
  4. D. DEKKER, Convex regions in projective space, The Amer. Math. Monthly 62(6) (1955), 430-431. https://doi.org/10.2307/2307000
  5. O. P. FERREIRA, A. N. IUSEM, S. Z. NEMETH, Projections onto convex sets on the sphere, Jour. Global Optimization 57(3) (2013), 663-676. https://doi.org/10.1007/s10898-012-9914-3
  6. J. de GROOT, H. de VRIES, Convex sets in projective space, Compositio Mathematica 13 (1956-1958), 113-118.
  7. B. P. HAALMEYER, Bijdragen tot de theorie der elementairoppervlakken, Amsterdam, 1917.
  8. L. HORMANDER, Notion of convexity, Mordern Birkhauser Classics, 1994.
  9. H. KNESER, Eine Erweiterung des Begriffes "konvexe Korper", Math. Ann. 82 (1921), 287-296. https://doi.org/10.1007/BF01498672
  10. N. H. KUIPER, On convex locally projective spaces, Convegno Intern. Geom. Diff. Italy, 1953, 200-213.
  11. K. MENGER, Urtersuchugen uber allgemeine Metrik, Math. Ann. 100 (1928), 75-163. https://doi.org/10.1007/BF01448840
  12. D. MINDA, The hyperbolic metric and bloch constants for spherically convex regions, Complex Variables 5 (1986), 127-140. https://doi.org/10.1080/17476938608814134
  13. R. SCHNEIDER, Convex bodies: the Brunn-Minkowski theory, Cambridge University Press, 1993.
  14. E. STEINITZ, Bedingt konvergente Reihen und konvexe Systeme. Teil III, J. Reine Anrgew. Math. 146 (1916), 1-52.
  15. T. TODDA, Convex sets in a real projective space and its application to computational geometry, manuscript.
  16. T. TODDA, Multi-convex sets in real projective spaces and their duality, manuscript.
  17. J. H. C. WHITEHEAD, Convex regions in the geometry of paths, Differential geometry: The Mathematical Works of J. H. C. Whitehead, (2014), 223-232.