DOI QR코드

DOI QR Code

Effect of Heavy Metals on the Survival and Population Growth Rates of Marine Rotifer, Brachionus plicatilis

중금속(Cd, Cu, Zn) 농도구배에 따른 윤충류 Brachionus plicatilis의 생존 및 개체군 성장에 미치는 영향

  • Hwang, Un-Ki (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Ryu, Hyang-Mi (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Heo, Seung (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Chang, Soo-Jung (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Lee, Ki-Won (Hanwha Marine biology Research Center) ;
  • Lee, Ju-Wook (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center)
  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 류향미 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 허승 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 장수정 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이기원 (한화 해양생물연구센터) ;
  • 이주욱 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Received : 2016.10.20
  • Accepted : 2016.11.02
  • Published : 2016.12.31

Abstract

Effect of heavy metals(Cd, Cu, Zn) on the survival and population growth rates(PGR) of marine rotifer, Brachionus plicatilis were examined. B. plicatilis were exposed to Cd, Cu and Zn for 24 h to determine their survival and 72 h to determine their PGR. Survival rates in the control groups were greater than 90%. They were decreased with increasing concentrations of Cd, Cu and Zn. Survival rates were reduced in a concentration-dependent manner. Significant reduction in survival rates after exposure to Cd, Cu and Zn at concentration greater than 40.00, 0.13 and $10.00mg\;L^{-1}$, respectively. PGR in the control groups were greater than 0.50. They were decreased with increasing concentrations of heavy metals. PGR were reduced in a concentration-dependent manner. Significant reduction in PGR after exposure to Cd, Cu and Zn occurred at concentration greater than 12.5, 0.06 and $1.00mg\;L^{-1}$, respectively. The order of heavy metal toxicity based on PGR was Cu>Zn>Cd, with $EC_{50}$ (50% Effective Concentration) values of 0.12, 6.15 and $21.41mg\;L^{-1}$, respectively. The lowest-observed-effective-concentrations(LOEC) of PGR after exposure to Cd, Cu and Zn were 12.50, 0.06 and $1.00mg\;L^{-1}$, respectively. The No-observed-effective-concentrations(NOEC) of PGR after exposure to Cd, Cu and Zn were 6.25, 0.03 and $0.01mg\;L^{-1}$, respectively, in marine ecosystems have toxic effects on PGR of B. plicatilis. These results suggest that the PGR of B. plicatilis are useful tool to assess the effect of heavy metals on primary consumers in marine natural ecosystems.

중금속 Cd, Cu 및 Zn이 해산로티퍼(Brachionus plicatilis)의 생존율 및 개체군 성장률에 미치는 영향을 알아보기 위하여 중금속 3종에 대한 독성평가를 수행하였다. 중금속에 24시간 노출하였을 때 Cd, Cu 및 Zn에 대한 생존율은 40.00, 0.13 및 $10.00mg\;L^{-1}$ 농도에서 급격한 감소가 시작되어 농도의존적으로 감소하였고, 중금속에 72시간 노출한 개체군 성장률도 Cd, Cu 및 Zn의 12.50, 0.06 및 $1.00mg\;L^{-1}$ 농도에서 급격한 감소가 시작되어, 중금속 3종에서 모두 농도의존적으로 감소하였다. Cd, Cu 및 Zn에 노출된 개체군 성장률의 $EC_{50}$ 값은 각각 21.41, 0.12 및 $6.15mg\;L^{-1}$이며, 독성의 세기는 Cu>Zn>Cd로 생존율과 개체군 성장률이 동일하였다. 또한 Cd, Cu 및 Zn에 대한 개체군 성장률의 LOEC는 각각 6.25, 0.03 및 $0.10mg\;L^{-1}$, NOEC는 각각 12.50, 0.06 및 $1.00mg\;L^{-1}$로 나타났다. 해양환경에서 개체군 성장률의 LOEC를 초과하는 농도가 B. plicatilis에게 독성영향을 미칠 수 있다고 판단되며, NOEC와 $EC_{50}$ 값은 혼합독성을 판단하기 위한 WET test와 해양생태계 내 생물에게 영향을 미치는 중금속 독성에 대한 가이드라인으로 활용될 수 있을 것이다.

Keywords

References

  1. Ahlf W, H Hollert, H Neumann-Hensel and M Ricking. 2002. A guidance for the assessment and evaluation of sediment quality a german approach based on ecotoxicological and chemical measurements. J. Soils and Sediments 2:37-42. https://doi.org/10.1007/BF02991249
  2. ASTM. 1991. Standard guideline for acute toxicity tests with the rotifer Brachionus Annual Book of ASTM Standards. Vol 11.04 E1440. American Society for Testing and Materials. USA.
  3. Bidwell JR, KW Wheeler and TR Burridge. 1998. Toxicant effects on the zoospore stage of the marine macroalga Ecklonia radiata. Mar. Ecol. Prog. Ser. 163:259-265. https://doi.org/10.3354/meps163259
  4. Choi HG, JS Park and PY Lee. 1992. Study on the heavy metal concentration in mussel and oyster from the Korean coastal water. Bull. Korean Fish. Soc. 25:485-494.
  5. Choi KY, SH Kim, GH Hong and HT Chon. 2012. Distributions of heavy metals in the sediments of South Korean harbors. Environ. Geochem. Health 34:71-82. https://doi.org/10.1007/s10653-011-9413-3
  6. Chu KW and KL Chow. 2002. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat. Toxicol. 61:53-64. https://doi.org/10.1016/S0166-445X(02)00017-6
  7. Fairbrother A, R Wenstel, K Sappington and W Wood. 2007. Framework for metals risk assessment. Ecotoxicol. Environ. Saf. 68:145-227. https://doi.org/10.1016/j.ecoenv.2007.03.015
  8. Halbach U. 1984. Population dynamics of rotifers and its consequences for ecotoxicology. Hydrobiologia 109:79-96. https://doi.org/10.1007/BF00006300
  9. Han TJ, YS Han, GS Park and SM Lee. 2008. Development marine ecotoxicological standard methods for Ulva sporulation test. Kor. J. Soc. Ocean. 13:121-128.
  10. Hwang UK, CW Rhee, SM Lee, KH An and SY Park. 2008. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Strongylocentrotus nudus). J. Environ. Sci. 17:775-781.
  11. Hwang UK, CW Rhee, KS Kim, KH An and SY Park. 2009. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Hemicentrotus pulcherrimus). J. Environ. Toxicol. 24:9-16.
  12. Hwang UK, HM Ryu, YH Choi, SM Lee and HS Kang. 2011. Effect of cobalt (II) on the fertilization and embryo development of the sea urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 29:251-257.
  13. Hwang UK, HM Ryu, SG Kim, SY Park and HS Kang. 2012a. Acute toxicity of heavy metal (Cd, Cu, Zn) on the hatching rates of fertilized eggs in the olive flounder (Paralichthys olivaceus). Korean J. Environ. Biol. 30:136-142.
  14. Hwang UK, JS Park, JN Kwon, S Heo, Y Oshima and HS Kang. 2012b. Effect of nickel on embryo development and expression of metallothionein gene in the sea urchin (Hemicentrotus pulcherrimus). J. Fac. Agr. Kyushu Univ. 57:145-149.
  15. Hwang UK, HM Ryu, J Yu and HS Kang. 2013. Toxic effects of arsenic and chromium on the fertilization and embryo development rates in the sea urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 31:69-77. https://doi.org/10.11626/KJEB.2013.31.2.069
  16. Lee SH and KW Lee. 1984. Heavy metals in mussels in the Korean coastal waters. J. Oceanol. Soc. Korea 19:111-117.
  17. Lee JW, HM Ryu, S Heo and UK Hwang. 2016. Toxicity assessment of heavy metals (As, Cr and Pb) using the rates of survival and population growth in marine rotifer, Brachionus plicatilis. Korean J. Environ. Biol. 34:193-200. https://doi.org/10.11626/KJEB.2016.34.3.193
  18. Lundebye AK, MHG Berntssen, SE Wendelar and A Maage. 1999. Biochemical and physiological responses in atlantic salmon (Salmo salar) following dietary exposure to copper and cadmium. Mar. Poll. Bull. 39:137-144. https://doi.org/10.1016/S0025-326X(98)00208-2
  19. Maage A, H Sveier and K julshamn. 1989. A comparison of growth rate and trace element accumulation in Atlantic salmon (Salmo salar) fry four different commercial diets. Aquaculture 79:267-273. https://doi.org/10.1016/0044-8486(89)90467-5
  20. Martin JM and M Whitfield. 1983. The significance of river input of chemical elements to the ocean. pp. 265-296. Trace Metals in sea Water. Plenum Press. New York.
  21. McGeer JC, C Szebedinszky, DG McDonald and CM Wood. 2000. Effects of chronic sublethal exposure to waterbone Cu, Cd or Zn in rainbow trout. Aquat. Toxicol. 50:231-243. https://doi.org/10.1016/S0166-445X(99)00105-8
  22. Molly V and L Krishnan. 2010. Reproductive potential of the rotifer, Brachionus rotundiformis Tschugunoff in relation to salinity, feed type and feed concentration. Indian J. Fish. 57:31-37.
  23. Mount DI and TJ Norberg. 1984. A seven-day life-cycle cladoceran toxicity test. Environ. Toxicol. Chem. 3:425-434. https://doi.org/10.1002/etc.5620030307
  24. Phillips DJH and DA Segar. 1986. Use of bio-indicators in monitoring conservative contaminants. Mar. Pollut. Bull. 17:10-15. https://doi.org/10.1016/0025-326X(86)90797-6
  25. Reiley MC. 2007. Science, policy and trends of metals risk assessment at EPA: how understanding metals bioavailability has changed metals risk assessment at US EPA. Aquat. Toxicol. 84:292-298. https://doi.org/10.1016/j.aquatox.2007.05.014
  26. Sladecek V. 1983. Rotifers as indicators of water quality. Hydrobiologia 100:169-201. https://doi.org/10.1007/BF00027429
  27. Snell TW and G Persoone. 1989a. Acute toxicity bioassays using rotifers. I. A test for brackish and marine environments with Brachionus plicatilis. Aqua. Toxicol. 14:65-80. https://doi.org/10.1016/0166-445X(89)90055-6
  28. Snell TW and G Persoone. 1989b. Acute toxicity bioassays using rotifers. II. Freshwater test with Brachionus rubens. Aqua. Toxicol. 14:65-80. https://doi.org/10.1016/0166-445X(89)90055-6
  29. Snell TW, BD Moffat, CR Janssen and G Persoone. 1991. Acute toxicity test using rotifers. III. Effects of temperature, strain and exposure time on the sensitivity of Brachionus plicatilis. Ecotoxicol. Toxicol. Wat. Qual. 6:63-75. https://doi.org/10.1002/tox.2530060106
  30. Viarengo A. 1985. Biochemical effects of trace metals. Mar. Pollut. Bull. 16:153-158. https://doi.org/10.1016/0025-326X(85)90006-2
  31. Wui IS, JB Lee and SH Yoo. 1992. Bioassay on marine sediment pollution by using sea urchin embryo culture in the south-west inland sea of Korean. Korean J. Environ. Biol. 10:92-99.
  32. Yap CK, A Ismail and SG Tan. 2004. Heavy metal (Cd, Cu, Pb and Zn) concentrations in the green-lipped mussel Perna viridis collected from some wild and aquacultural sites in the west coast of Peninsular Malaysia. Food Chem. 84:569-575. https://doi.org/10.1016/S0308-8146(03)00280-2