DOI QR코드

DOI QR Code

Applicability test of broad leaf samples stored at the NESB for biomonitoring of airborne pollutants

국가환경시료은행 활엽 시료를 활용한 지역별 대기침적 오염물질 모니터링 활용성 검토

  • Lee, Jongchun (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Lee, Jangho (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Park, Jong-Hyouk (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Lee, Eugene (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Shim, Kyuyoung (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Jang, Heeyon (Natural Environment Research Division, National Institute of Environmental Research)
  • 이종천 (국립환경과학원 자연환경연구과) ;
  • 이장호 (국립환경과학원 자연환경연구과) ;
  • 박종혁 (국립환경과학원 자연환경연구과) ;
  • 이유진 (국립환경과학원 자연환경연구과) ;
  • 심규영 (국립환경과학원 자연환경연구과) ;
  • 장희연 (국립환경과학원 자연환경연구과)
  • Received : 2016.11.07
  • Accepted : 2016.12.14
  • Published : 2016.12.31

Abstract

The National Environmental Specimen Bank (NESB) has been collecting broad leave samples to monitor environmental pollution from five different designated sampling areas. In order to ensure the reproducibility and comparability of the results, all the procedures from selecting trees and pooling leaves to make the representative sample are defined in the standard operation procedures(the SOP). The representative samples were subjected to the chemical analyses for some heavy minerals and Polycyclic Aromatic Hydrocarbons(PAHs). The uncertainty levels involved in each step of the SOP, that is, the sampling and the chemical analysis, were derived using the Robust ANOVA, which enables the relative comparison among the different levels of pollutants concentrations with confidence. Furthermore, the effect of the varying degrees of precipitation on the pollutants concentration of the leaves was also examined. Overall, the biological difference estimated from the duplicate samples was found to exceed the variation across the site, implying even aerial deposition over site. Samples from Gwanak Mt. showed highest heavy metal concentrations than the other sites. Washing off effect of the pollutants adhering in the form of particles on the leaf surface was found to be affected by the cumulative precipitation.

국가환경시료은행(NESB)에서는 환경오염물질의 생태계 영향을 모니터링하기 위한 시료로서 8종의 생물시료를 정기적으로 채취하여 초저온(<$-130^{\circ}C$) 저장을 해 오고 있다. 이 중 2 종의 활엽수(느티나무 및 신갈나무 잎)가 중금속 및 잔류성유기오염물질(POPs)과 같은 대기오염물질 모니터링을 위한 환경시료로서 활용되기 위해 채취되고 있다. 한 지역을 대표하기 위해 군락 내 여러 개체에서 시료를 채취하는 과정에서 개체별 차이 및 오염분포 특성에 따른 이질성이 구성 시료의 대표성에 영향을 미치게 되고 따라서 분석을 통한 측정값을 활용한 연구의 신뢰도에 문제를 초래할 수 있다. 따라서 이러한 시료종은 엄격한 표준운영절차(SOP)에 따라 채취됨으로써 대표성을 확보할 수 있고 이를 근거로 오염물질의 지역간, 연도별 비교가 가능하게 된다. 본 연구에서는 표준운영절차(SOP)에 따라 5 지역의 고정구에서 채취된 신갈나무, 느티나무 잎 시료를 대상으로 지역 간 오염물질의 농도차이를 비교하기 위해 주요원소 및 중금속, 그리고 다환방향족탄화수소(Polycyclic aromatic hydrocarbons, PAHs)에 대한 분석을 실시하였다. 그 결과인 측정값을 활용하기에 앞서 이에 대한 신뢰도 수준을 평가하기 위한 방편으로 시료채취단계에서 중복 시료를, 시료분석단계에서 중복분석을 수행하여 분산분석(ANOVA)을 수행하였다. 이로써 시료채취 및 분석의 단계별 불확도를 분리하여 산출한 후 측정불확도로 통합한 결과 측정값의 지역 간 연도별 농도비교에 통계적 신뢰도 수준으로 활용할 수 있었다. 아울러 잎표면 대기침적물질 중 강우에 영향을 받는 중금속 및 PAHs 종류를 파악하기 위해 누적강우량과 오염물질의 축적도간 관계를 분석하였다.

Keywords

References

  1. Alfani A, De Nicola F, Maisto G, Prati MV. 2005. Long-term PAH accumulation after bud break in Quercus ilex L. leaves in a polluted environment. Atmospheric Environment. 39(2): 307-314. https://doi.org/10.1016/j.atmosenv.2004.09.001
  2. Baek SO, Choi JS. 1998. Effect of ambient temperature on the distribution of atmospheric concentrations of polycyclic aromatic hydrocarbons in the vapor and particulate phases, Journal of Korea Air Pollution Research Association. 14(2): 117-131. [Korean Literature]
  3. Cheruiyot NK, Lee WJ, Mwangi JK, Wang LC, Lin NH, Lin YC, Cao J, Zhang R, Chang G. An Overview: Polycyclic Aromatic Hydrocarbon Emissions from the Stationary and Mobile Sources and in the Ambient Air. Aerosol and Air Quality Research. 15: 2730-2762. [Korean Literature] https://doi.org/10.4209/aaqr.2015.11.0627
  4. EPA 1996. EPA Method 3052, Microwave assisted acid digestion of siliceous and organically based matrices, USA.
  5. EPA 1999. Compendium of methods for the determination of toxic organic compounds in ambient air, second edition, USA.
  6. Han JS, Lee MD, Lim YJ, Lee SW, Kim YM, Kong BJ, An JY, Hong YD. 2006. Study on the Distributions of VOCs, Aldehydes, PAHs Concentration in Seoul Metropolitan Area, Journal of Korea Society for Atmospheric Environment. 22(5): 574-589. [Korean Literature]
  7. Hwang HM, Wade T, Sericano J. 2003. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmospheric Environment. 37(2003): 2259-2267. https://doi.org/10.1016/S1352-2310(03)00090-6
  8. Lee JH, Lee JC, Bade R, Han AR, Lee EJ, Kim MS, Kim MJ, Oh GJ. 2012. Application of SOPs of National Environmental Specimen Bank (III). NIER Report. [Korean Literature]
  9. Lee JC, Lee JH, Park JH, Lee EJ, Shim KY, Kim TG, Han AR, Kim MJ. 2015. Evaluation of the Measurement Uncertainty from the Standard Operating Procedures(SOP) of the National Environmental Specimen Bank. Journal of Environmental Impact Assessment 24(6): 607-618. [Korean Literature] https://doi.org/10.14249/eia.2015.24.6.607
  10. Norouzi S, Khademia H, Canob AF, Acosta JA. 2015. Using plane tree leaves for biomonitoring of dust borne heavy metals: A case study from Isfahan, Central Iran. Ecological Indicators. 57: 64-73. https://doi.org/10.1016/j.ecolind.2015.04.011
  11. Ramsey MH, Watkins PJ, Sams MS. 1998. Estimation of measurement uncertainty for in situ borehole determinations using a geochemical logging tool. Geological Society, London. Special Publication. 136: 53-63. https://doi.org/10.1144/GSL.SP.1998.136.01.06
  12. Ratola N, Amigo JM, Alves A. 2010. Comprehensive assessment of pine needles as bioindicators of PAHs using multivariate analysis. The importance of temporal trends. Chemosphere. 81(11): 1517-1525. https://doi.org/10.1016/j.chemosphere.2010.08.031
  13. Schreck E, Foucault Y, Sarret G, Sobanska S, Cecillon L, Casrtec-Rouelle M, Uzu G, Dumat C. 2012. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Science of the Total Environment. 427-428: 253-262. https://doi.org/10.1016/j.scitotenv.2012.03.051
  14. Tarricone K, Wagner G, Klein R. 2015. Toward standardization of sample collection and preservation for the quality of results in biomonitoring with trees - A critical review. Ecological Indicators. 57: 341-359. https://doi.org/10.1016/j.ecolind.2015.05.012
  15. Tomasevic M, Anicic M, Jovanovic L, Peric-Grujic A, Ristic M. 2011. Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology. Ecological Indicators 11: 1689-1695. https://doi.org/10.1016/j.ecolind.2011.04.017
  16. Zhang Y, Tao S, Cao J, Coveney Jr, RM. 2007. Emission of polycyclic aromatic hydrocarbons in China by county. Environmental Science and Technology 41: 683-687. https://doi.org/10.1021/es061545h