DOI QR코드

DOI QR Code

Physiological Responses for Soil Water Stresses in 'Mihong' Peach Tree

복숭아 '미홍'의 토양 수분 스트레스에 따른 생리반응

  • Kwon, Yong Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Jae Man (Icheon-si Agricultural Technology Center) ;
  • Han, Hyun Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Jeong, Jae Hoon (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Do, Gyung-Ran (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Han-Chan (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Park, Hee-Seung (Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University)
  • 권용희 (농촌진흥청 국립원예특작과학원) ;
  • 이재만 (이천시 농업기술센터) ;
  • 한현희 (농촌진흥청 국립원예특작과학원) ;
  • 류수현 (농촌진흥청 국립원예특작과학원) ;
  • 정재훈 (농촌진흥청 국립원예특작과학원) ;
  • 도경란 (농촌진흥청 국립원예특작과학원) ;
  • 한점화 (농촌진흥청 국립원예특작과학원) ;
  • 이한찬 (농촌진흥청 국립원예특작과학원) ;
  • 박희승 (중앙대학교 생명자원공학부)
  • Received : 2016.09.12
  • Accepted : 2016.10.31
  • Published : 2016.12.31

Abstract

The present study was conducted to characterize physiological responses of aerial part according to soil water stresses in 'Mihong' peach trees. Discolorations, wilting and falling of leaves were observed in chronological order as response for waterlogging and no irrigation and the phenomena started from basal to end of shoots. Shoot growth in elongation and thickness decreased and fallen leaves were severe in waterlogged trees. Function of water uptake by roots and photosynthesis and leaf respiration decreased by waterlogging. Leaf chlorophyll contents decreased in both treatments. In waterlogging treatment, decrease of chlorophyll was observed in normal leaves with waterlogging using light microscopy. Starch content was lower in both treatment and carbohydrate content was lower in root with waterlogging. These results demonstrated that waterlogging weakened the function of soil water uptake and movement and decreased photosynthesis and fallen leaves. Finally the peach trees would wither or suffer low temperature damage through the shortage of reserve accumulations. We suggested that waterlogging damage in peach trees could be reduced to take notice of irrigation and install drainage facility to improve soil condition.

복숭아 '미홍' 품종의 토양 수분 스트레스에 의해 나타나는 지상부의 생리적 반응을 구명하기 위해 본 연구를 수행하였다. 잎의 변색, 위조, 낙엽의 순서로 침수와 무관수에 의해 반응이 나타났으며 가지의 기부에서 시작되어 선단부로 확대되었다. 가지의 길이 및 직경 생장이 두 처리구에서 모두 감소되었고 침수에 의한 낙엽이 심하게 발생되었다. 침수에 의해 뿌리의 수분 흡수와 잎의 광합성과 호흡이 감소되었다. 잎의 엽록소가 두 처리구에서 모두 감소되었다. 침수처리구에서는 육안으로 변화가 없던 잎에서도 엽록소가 감소한 것이 해부학적으로 관찰되었다. 전분은 침수와 무관수에서 모두 감소되었고 탄수화물은 침수처리구의 뿌리에서 감소되었다. 침수는 수분의 흡수나 이동이 불량해지고, 광합성능력의 감소와 낙엽이 발생되었다. 결국 저장양분이 부족해져 고사되거나 내한성 약화로 저온피해의 가능성이 높은 것으로 판단되었다. 복숭아 재배에서 수분 스트레스에 의한 피해를 방지하기 위해 관수에 유의하고 배수시설을 설치하여 토양조건을 개선하는 것이 요구된다.

Keywords

References

  1. Amador, M.L., S. Sancho, B. Bielsa, J. Gomez-Aparisi, and M.J. Rubio-Cabetas. 2012. Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage. Physiol. Plant. 144:357-368. https://doi.org/10.1111/j.1399-3054.2012.01568.x
  2. Anderson, P.C., P.B. Lombard, and M.N. Westwood. 1984. Effect of root anaerobiosis on the water relations of several Pyrus species. Physiol. Plant. 62:245-252. https://doi.org/10.1111/j.1399-3054.1984.tb00378.x
  3. Ashraf, M. and P. Harris. 2005. Abiotic stresses. Food products press, NY.
  4. Bailey-Serres, J. and L.A. Voesenek. 2008. Flooding stress: acclimations and genetic diversity. Ann. Rev. Plant Biol. 59:313-339. https://doi.org/10.1146/annurev.arplant.59.032607.092752
  5. Boyer, J.S. 1982. Plant productivity and environment. Science 218:443-448. https://doi.org/10.1126/science.218.4571.443
  6. Choi, S.Y. and M.S. Huh. 2001. Analysis of flooding damage by heavy rain on 'Fuji'/M.26 apple tree. Kor. J. Hort. Sci. Technol. 19:362-366.
  7. Colmer, T.D., M.R. Gibberd, A. Wiengweera, and T.K. Tinh. 1998. The barrier to radian oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. J. Exp. Bot. 49:1431-1436. https://doi.org/10.1093/jxb/49.325.1431
  8. Drew, M.C. 1997. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48:223-250. https://doi.org/10.1146/annurev.arplant.48.1.223
  9. Evans, D.E. 2003. Aerenchyma formation. New Phytol. 161:131-141.
  10. Han, J.H., H.H. Han, Y.H. Kwon, J.H. Jung, S.H. Ryu, K.R. Do, H.C. Lee, I.M. Choi, and T.C. Kim. 2016. Effect of early defoliation on fruit yield, reserve accumulations and flower bud formation in 'Sinano Sweet' apple tree. Protected Hort. Plant Fac. 25:133-137. https://doi.org/10.12791/KSBEC.2016.25.2.133
  11. Iacona, C., M. Cirilli, A. Zega, E. Frioni, C. Silvestri, and R. Muleo. 2013. A somaclonal myrobalan rootstock increases waterlogging tolerance to peach cultivar in controlled conditions. Sci. Hortic. (Amsterdam) 156:1-8. https://doi.org/10.1016/j.scienta.2013.03.014
  12. Kang, S.B., H.I. Jang, I.B. Lee, J.M. Park, and D.K. Moon. 2007. Changes in photosynthesis and chlorophyll fluorescence of 'Campbell Early' and 'Kyoho' grapevine under long-term waterlogging condition. Kor. J. Hort. Sci. Technol. 25:400-407.
  13. Kozlowski, T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. 1:1-29.
  14. Kozlowski, T.T. and S.G. Pallardy. 1984. Flooding and plant growth. Academic Press Inc., Orlando, Florida.
  15. Maiti, R., P. Satya, D. Rajkumar, and A. Ramaswamy. 2012. Anatomical adaptation for drought and waterlogging stress tolerance. Crop plant anatomy. CABI, India, pp. 278-284.
  16. Meguro, N., H. Tsuji, N. Tsutsumi, M. Nakazono, and A. Hirai. 2006. Abiotic stress tolerance in plants. Springer.
  17. Miller, D.P., G.S. Howell, and R.K. Striegler. 1988. Cane and bud hardiness of own-rooted white riesling and scions of white riesling and chardonnay grafted to selected rootstocks. Am. J. Enol. Vitic. 39:60-66.
  18. Odiyi, B.O. 2003. The effects of flooding and drought stress on the growth of maize (Zea mays, L.) seedling. Journal of Biological and Food Science Research 2:30-32.
  19. Pimentel, P., R.D. Almada, A. Salvatierra, G. Toro, M.J. Arismendi, M.T. Pino, B. Sagredo, and M. Pinto. 2014. Physiological and morphological responses of Prunus species with different degree of tolerance to long-term root hypoxia. Sci. Hortic. (Amsterdam) 180:14-23. https://doi.org/10.1016/j.scienta.2014.09.055
  20. Ranny, G.T. 1994. Differential tolerance of eleven Prunus taxa to root zone flooding. J. Environ. Hort. 12:138-141.
  21. Salvatierra, A., P. Pimentel, R. Almada, and P. Hinrichsen. 2016. Exogenous GABA application transiently improves the tolerance to root hypoxia on a sensitive genotype of Prunus rootstock. Environ. Exp. Bot. 125:52-66. https://doi.org/10.1016/j.envexpbot.2016.01.009
  22. Taiz, L. and E. Zeiger. 2002. Plant physiology. Sinauer associates, Massachusetts, USA.