Acknowledgement
Supported by : 한국연구재단
References
- Chan, A. L. S., & Chow, T. T. (2013). Energy and economic performance of green roof system under future climatic conditions in Hong Kong. Energy and Buildings, 64, 182-198. https://doi.org/10.1016/j.enbuild.2013.05.015
- de Wit, S. & Augenbroe, G. (2002). Analysis of uncertainty in building design evaluations and its implications. Energy and Buildings, 34, 951-958. https://doi.org/10.1016/S0378-7788(02)00070-1
- de Wilde, P. & Tian, W. (2012). Management of thermal performance risks in buildings subject to climate change. Building and Environment, 55, 167-177. https://doi.org/10.1016/j.buildenv.2012.01.018
- de Wilde, P. & Tian, W. (2010). Predicting the performance of an office under climate change: A study of metrics, sensitivity and zonal resolution. Energy and Buildings, 42, 1674-1684. https://doi.org/10.1016/j.enbuild.2010.04.011
- DOE. (2013). EnergyPlus 8.0 Input/Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output, US Department Of Energy.
- Erbs, D. G., Klein, S. A., & Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily, and monthly-average global radiation. Solar Energy, 28(4), 293-302. https://doi.org/10.1016/0038-092X(82)90302-4
- Glassman, E. J. & Reinhart, C. (2013). Facade optimization using parametric design and future climate scenarios. Proceedings of the 13th IBPSA Conference, August 25-28, Chambery, France, 1585-1592.
- Goldstein, M. & Rougier, J. C. (2006). Bayes linear calibrated prediction for complex systems. Journal of the American Statistical Association, 101, 1132-1143. https://doi.org/10.1198/016214506000000203
- Hanby, V. I. & Smith, S. T. (2012), Simulation of the future performance of low-energy evaporative cooling systems using UKCP09 climate projections. Building and Environment, 55, 110-116. https://doi.org/10.1016/j.buildenv.2011.12.018
- Helton, J. C. & Davis, F. J. (2003). Latin hypercube sampling and propagation of uncertainty in analyses of complex systems. Reliability Engineering and System Safety, 81, 23-69. https://doi.org/10.1016/S0951-8320(03)00058-9
- IBPSA. (1987-2015). Proceedings of the IBPSA (International Building Performance Simulation Association) conference ('87. '91, '93, '95, '97, '99, '01, '03, '05, '07, '09, '11, '13, '15).
- Iolova, K., Bernier, M., & Charneux, R. (2007). Detailed energy simulations of a net-zero energy triplex in Montreal, Proceedings of the 2nd Canadian Solar Buildings Conference, June 10-14, Calgary.
- IPCC. (2007). Climate change. In: Pachauri RK, Reisinger A, editors. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Geneva, Switzerland.
- Jylha, K., Jokisalo, J., Ruosteenoja, K., Pilli-Sihvola, K., Kalamees, T., Seitola, T., Mäkelä, H. M., Hyvonen, R., Laapas, M., & Drebs, A. (2015). Energy demand for the heating and cooling of residential houses in Finland in a changing climate. Energy and Buildings, 99, 104-116. https://doi.org/10.1016/j.enbuild.2015.04.001
- Kennedy, M. C. & O'Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society, Series B, 63, Part3, 425-464. https://doi.org/10.1111/1467-9868.00294
- Kim, Y. J., Kim, K. C., & Park, C. S. (2014). Deterministic vs. stochastic calibration of energy simulation model for an existing building. The 2nd Asia conference of International Building Performance Simulation Association, November 28-29, Nagoya, Japan, 594-601.
- Kim, Y. J., Ahn, K. U., & Park, C. S. (2013). Gaussian emulator for stochastic optimal design of a double glazing system. Proceedings of the 13th IBPSA Conference, August 25-28, Chambery, France, 2217-2224.
- Legutke, S. & Voss, R. (1999). The Hamburg atmosphere-ocean coupled model ECHO-G. Technical Report 18, German Climate Computer Center (DKRZ).
- Lomas, K. L. & Eppel, H. (1992). Sensitivity analysis techniques for building thermal simulation programs. Energy Buildings, 19, 21-44. https://doi.org/10.1016/0378-7788(92)90033-D
- Macdonald, I. A. (2009). Comparison of sampling techniques on the performance of monte-carlo based sensitivity analysis, Proceedings of the 11th IBPSA Conference, July 27-30, Glasgow, Scotland, 992-999.
- Min, S. K., Legutke, S., Hense, A., & Kwon, W. T. (2005). Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G-I. Near-surface temperature, precipitation and mean sea level pressure. Tellus, 57A, 605-621.
- Neal, R. M. (1997). Monte carlo implementation of gaussian process models for Bayesian regression and classification, Technical Report 9702, Dept. of statistics and Dept. of Computer Science, University of Toronto.
- Oakley, J. & O'Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: a bayesian approach. Journal of the Royal Statistical Society, Series B 66, 751-769. https://doi.org/10.1111/j.1467-9868.2004.05304.x
- Park, E. H. & Kwon, W. T. (2004). Future projections of east asian climate change from multi-AOGCM ensembles of IPCCSRES scenario simulations. Journal of the Meteorological Society of Japan, 82(4), 1187-1211. https://doi.org/10.2151/jmsj.2004.1187
- Park, S. Y., Park, H. S., Lee, S. H., Kim, J. Y., & Hong, S. H. (2010). A study on the optimization of heating and cooling system university campus, Korea Institute of Ecological Architecture and Environment, 10(6), 139-144.
- Perry, M. & Hollis, D. (2005). The generation of monthly gridded datasets for a range of climatic variables over the UK. International Journal of Climatology, 25, 1041-1054. https://doi.org/10.1002/joc.1161
- Petersen, S. & Bundgaard, K. W. (2014). The effect of weather forecast uncertainty on a predictive control concept for building systems operation. Applied Energy, 116, 311-321. https://doi.org/10.1016/j.apenergy.2013.11.060
- Robert, A. & Kummert, M. (2012). Designing net-zero energy buildings for the future climate, not for the past. Building and Evironmnet, 55, 150-158.
- Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dumenil, L., Esch, M., Giorgetta, M., Schlese, U., & Schulzweida, U. (1996). The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate Max-Planck Institute for Meteorology. Report No.218, Hamburg, Germany.
- Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity Analysis in Practice, Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global sensitivity analysis, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.
- Wolff, J., Maier-Reimer, E., & Legutke, S. (1997). The Hamburg Primitive Equation Model HOPE. Technical Report 18, German Climate Computer Center (DKRZ).
- Yu, F. W., Chan, K. T., & Sit, R. K. Y. (2012). Climate influence on the design and operation of chiller systems serving office buildings in a subtropical climate. Energy and Buildings, 55, 500-507. https://doi.org/10.1016/j.enbuild.2012.08.022