DOI QR코드

DOI QR Code

Design of Extendable BCD-EXCESS 3 Code Convertor Using Quantum-Dot Cellular Automata

확장성을 고려한 QCA BCD-3초과 코드 변환기 설계

  • You, Young-won (Department of Computer Engineering, Kumoh National Institute of Technology) ;
  • Jeon, Jun-cheol (Department of Computer Engineering, Kumoh National Institute of Technology)
  • 유영원 (금오공과대학교 컴퓨터공학과) ;
  • 전준철 (금오공과대학교 컴퓨터공학과)
  • Received : 2015.01.14
  • Accepted : 2016.02.11
  • Published : 2016.02.28

Abstract

Quantum-dot cellular automata (QCA) consists of nano-scale cells and demands very low power consumption so that it is one of the alternative technologies that can overcome the limits of scaling CMOS technologies. Typical BCD-EXCESS 3 code converters using QCA have not considered the scalability so that the architectures are not suitable for a large scale circuit design. Thus, we design a BCD-EXCESS 3 code converter with scalability using QCADesigner and verify the effectiveness by simulation. Our structure have reduced 32 gates and 7% of garbage space rate compare with typical URG BCD-EXCESS 3 code converter. Also, 1 clock is only needed for circuit expansion of our structure though typical QCA BCD-EXCESS 3 code converter demands 7 clocks.

양자점 셀룰라 오토마타 (QCA; quantum-dot cellular automata)는 나노 규모의 크기와 낮은 전력 소비로 각광받고 있으며, CMOS 기술의 규모의 한계를 극복할 수 있는 대체 기술로 떠오르고 있다. 현재까지 QCA상에서 설계된 BCD-3초과 코드는 확장성을 고려하지 않았으며 대규모 회로 설계에는 적합하지 않았다. 이를 해결하기 위해 본 논문에서는 확장성을 고려한 BCD-3초과 코드 회로를 설계한다. 확장이 가능한 구조를 설계하기 위해 확장된 교차부 구조를 이용하여 입력과 출력의 흐름을 제어하고, 출력되는 값들의 동기화를 위해 5입력 다수결 게이트를 이용한다. 설계한 구조에 대해 QCADesigner를 이용하여 시뮬레이션을 수행한 후 그 결과에 대해 유효성을 검증한다. 제안된 구조는 기존의 URG BCD-3초과 코드변환기와 비교하여 32개의 게이트를 줄이며 빈 공간의 비율 또한 7% 감소시켰다. 또한 확장성이 고려되지 않은 기존의 QCA BCD-3초과 코드 변환기가 회로 확장 시 필요한 7개의 클럭을 1개의 클럭으로 줄였다.

Keywords

References

  1. C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, "Quantum cellular automata," Nanotechnology, Vol. 4, No. 1, pp. 49-57, 1993. https://doi.org/10.1088/0957-4484/4/1/004
  2. P. D. Tougaw and C. S. Lent. "Logical devices implemented using quantum cellular automata," Journal of Applied physics, Vol. 75, No. 3, pp.1818-1825, 1994. https://doi.org/10.1063/1.356375
  3. W. Wang, K. Walus and G. A. Jullien, "Quantum-dot cellular automata adders," in Proceedings of Third IEEE Nano Conference (IEEE-NANO 2003), San Francisco: CA, pp. 461-464, 2003.
  4. A. Fijany, N. Toomarian, K. Modarress and M. Spotnitz, Bit-serial adder based on quantum dots, NASA Tech, California, NASA Technical Report NPO-20869, pp. 10-12, 2003.
  5. A. Vetteth, K. Walus, V. S. Dimitrov, G. A. Jullien, "Quantum-dot cellular automata carry-look-ahead adder and barrel shifter," in Proceedings of IEEE Emerging Telecommunications Technologies Conference, Dallas: TX, pp. 2-4, 2002.
  6. M. T. Niemier, M. J. Kontz, and P. M. Kogge, "A design of and design tools for a novel quantum dot based microprocessor," in Proceedings of the 37th Annual Design Automation Conference, Los Angels: CA, pp. 227-232, 2000.
  7. K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, "QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata," IEEE Transactions on Nanotechnology, Vol. 3, No. 1, pp. 26-31, 2004. https://doi.org/10.1109/TNANO.2003.820815
  8. C. S. Lent and P. D. Tougaw. "A device architecture for computing with quantum dots," Proceedings of the IEEE, Vol. 85, No. 4, pp. 541-557, 1997. https://doi.org/10.1109/5.573740
  9. K. Kim, K. Wu, and R. Karri. "Towards designing robust qca architectures in the presence of sneak noise paths," in Proceedings of the Conference on Design, Automation and Test in Europe, Los Alamitos: CA, pp. 1214-1219, 2005.
  10. H. Hwang and J. C. Jeon, "Analysis of inverter on quantum dot cellular automata," in Korea Computer Congress 2013, Yeosu: Korea, pp. 759-761, 2013
  11. J. H. Park, Y. W. You and J. C. Jeon, "Design of BCD-excess 3 code converter using quantum-dot cellular automata," in Korea Computer Congress 2013, Yeosu: Korea, pp. 762-764, 2013.
  12. W. Porod, "Quantum-dot devices and quantum-dot cellular automata," International Journal of Bifurcation and Chaos, Vol. 7, No. 10, pp. 2199-2218, 1997. https://doi.org/10.1142/S0218127497001606
  13. R. Akeela and M. D. Wagh. "A five-input majority gate in quantum-dot cellular automata," NSTI Nanotech, Vol. 2. pp. 978-981, 2011.
  14. Y. W. You and J. C. Jeon, "Efficient design of BCD-excess 3 code converter using quantum-dot cellular automata," The Journal of Korea Navigation Institute, Vol. 17, No. 6, pp.700-704, 2013.
  15. M. Saravanan, and K. S. Manic. "Energy efficient code converters using reversible logic gates," in Proceedings of IEEE International Conference on Green High Performance Computing (ICGHPC), Nagercoil: India, pp. 1-6, 2013.

Cited by

  1. 확장성을 고려한 QCA XOR 게이트 설계 vol.20, pp.6, 2016, https://doi.org/10.12673/jant.2016.20.6.631
  2. Design of thermometer code-to-gray code converter circuit in quantum-dot cellular automata for nano-computing network vol.41, pp.3, 2016, https://doi.org/10.1007/s11107-021-00937-9