Theory and Practice of Explosive Blasting

화약 발파의 이론과 실제

  • 류창하 (한국지질자원연구원 전략기술연구본부 심지층연구단) ;
  • 최병희 (한국지질자원연구원 전략기술연구본부 심지층연구단)
  • Received : 2016.12.07
  • Accepted : 2016.12.19
  • Published : 2016.12.30

Abstract

Explosive blasting utilizes the energy produced from the explosion of explosive materials. Since the black powder, the first type of explosive, was invented, various types of explosives have been developed until a recent emulsion explosive which is powerful as well as safe in use. The detonators continue to be developed from safety fuse to the recent electronic detonators which allow extremely accurate and flexible control of delay time. However, the good explosives and detonators do not always lead to the good blast results. It entirely depends on the blast engineer. It is necessary to develop the empirical or theoretical models based on the field experience and sound theoretical algorithm. Such models would be very useful for blast design and, furthermore, provide the idea of further technical development. This paper introduces some models used in explosive blasting and attention to be paid for field application.

화약 발파는 물질이 연소할 때 발생하는 에너지를 파괴 동력으로 이용한다. 화약은 흑색화약으로부터 강력한 위력을 가진 다이너마이트에 이어 취급의 안정성도 향상시킨 에멀션 폭약의 개발에까지 이르고 있으며, 또한 뇌관과 같은 화공품도 공업뇌관과 도화선으로부터 전기 뇌관, 비전기 뇌관에 이어 초정밀 시차를 제어할 수 있는 전자뇌관의 개발에까지 발전되어 왔다. 그러나 아무리 성능이 우수한 화약과 뇌관을 사용한다고 하더라도 좋은 발파 결과를 얻을 수 있는 것은 아니다. 실제 현장의 다양한 조건을 어떻게 고려하여 설계 및 시공에 활용할 것인가는 전적으로 발파기술자의 손에 달려 있다. 암반을 대상으로 하는 발파는 많은 미지의 영향 변수들 때문에 실제 현장에서의 경험에 기초한 접근 방법이 매우 중요하다. 또한 현장에서의 관찰 결과를 분석하고 실험을 통해 정량화된 경험적 모델을 도출하거나, 이론적 근거를 정립하여 이론적 모델로 발전시키는 것은 발파 설계에의 활용뿐만 아니라 새로운 기술개발에 대한 아이디어를 제공한다는 측면에서도 필요하다. 본 논문에서는 발파 분야에서 개발된 몇 가지 경험적 모델과 이론적 모델들을 통해 활용 시 주의해야 할 사항들이 고찰되었다.

Keywords

References

  1. 류창하, 최병희, 선우춘, 홍기표, 2004, 공기층을 이용한 양면발파방법, 제0451817호.
  2. 조상호, 조슬기, 김승곤, 박 찬, 金子勝比古, 2009, 단계적 충격하중에 의한 암석의 동적손상메커니즘에 관한 실험적 연구 터널과 지하공간, Vol. 19, No. 6, pp. 545-557.
  3. 최병희, 양형식, 류창하, 2005, PFC를 이용한 콘크리트기 둥의 발파모델링, 화약발파, Vol. 23, No. 1, pp. 47-54.
  4. 日本火藥学會, 2001, 現場技術者のための發破工学 ハンドブツク, 共立出版株式會社, pp. 548.
  5. Belidor, B. F., 1725, Nouveau cours mathematique a l'usage d'Artillerie et du Genie, Paris, pp. 505.
  6. Belytschko, T., Plesha, M. and Dowding, C. H., 1984, A Computer Method for Stability Analysis of Caverns in Jointed Rock, Int. J. Numerical Analysis Methods in Geomechanics, Vol. 18, pp. 473-492.
  7. Chiappetta R. F. and Memmele, M. E., 1987, Analytical high-speed photography to evaluate air-decks, stemming retention a. nd gas confinement in pre-splitting reclamation and gross motion studies. In: Proceedings of the second international symposium on rock fragmentation by blasting, Society for Experimental Mechanics, Bethel, CT, USA, pp. 257-301.
  8. Cundall, P., 1971, A Computer Model for Simulation Progressive Large Scale Movements in Blocky Rock System, Proc. Int. Symp. Rock Fracture, Nancy, France, Paper II pp. 2-8.
  9. Cundall, P., 1980, UDEC-A Generalized Distinct Element Program for Modelling Jointed Rock, U. S. Army European Research Office and Defence Nuclear Agency, Contract DATA 37-39-C-0548.
  10. Chen, S. G. and J. Zhao, 1998, A study of UDEC modelling for blast wave propagation in jointed rock masses, Int. J. Rock Mechanics & Mining Sciences, Vol.35. No. 1. pp. 93-99. https://doi.org/10.1016/S0148-9062(97)00322-7
  11. Dai, F. and K. Xia, 2008, Dynamic Tensile Strength and Fracture Toughness of Anisotropic Rocks, Proceedings of the XIth International Congress and Exposition, pp. 1-8.
  12. Dambrun, 1873, Etude sur les Effects des Mines militares, Memorial de l'Officier Du Genie, 21, Paris.
  13. Hino, K., 1959, Theory and Practice of Blasting, Nippon Kayaku Co., 1st ed., pp. 189.
  14. Holsapple, K. A. and R. M. Schmidt, 1980. On the Scaling of Crater Dimensions 1. Explosive Processes, J. Geophys. Res. 85, No. B12, pp. 7247-7256. https://doi.org/10.1029/JB085iB12p07247
  15. Hopkinson, B., 1914, A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets, Philos. Trans. R. Soc. London, A, Vol. 213, pp. 437-456. https://doi.org/10.1098/rsta.1914.0010
  16. Jhanwar, 2011, Theory and Practice of Air-Deck Blasting in Mines and Surface Excavations: A Review, Geotech. Geol. Eng. Vol. 29, pp. 651-663. https://doi.org/10.1007/s10706-011-9425-x
  17. Kolsky, H., 1949, An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading, Proc. Phys. Soc., London, B, Vol. 62, pp. 676-700. https://doi.org/10.1088/0370-1301/62/11/302
  18. Langefors, U. and B. Kihlstrom, 1978, The Modern Technique of Rock Blasting, 3rd ed., John Wiley & Sons, 438p.
  19. Li, X., Z. Zhou, F. Zhao, Y. Zuo, C. Ma, Z. Ye. and L. Hong, 2009, Mechanical properties of rock under coupled static-dynamic loads, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 1, No. 1, pp. 41-47. https://doi.org/10.3724/SP.J.1235.2009.00041
  20. Liu, S. and J. Xu, 2013, Study on dynamic characteristics of marble under impact loading and high temperature, Int. J. Rock Mechanics & Mining Sciences, Vol. 62, pp. 51-58. https://doi.org/10.1016/j.ijrmms.2013.03.014
  21. Oberbeck, V. R., 1971, Laboratory Simulation Impact Cratering with High Explosives, Journal of Geophysical Research, Vol. 76, No. 23, pp. 5732-5749. https://doi.org/10.1029/JB076i023p05732
  22. Plesha, M. E., 1984, A Method for the Transient Analysis of Jointed Media, Dept. Eng. Mech., Univ. of Wisconsin, pp. 37.
  23. Qian, Q., C. Qi. and M. Wang, 2009, Dynamic strength of rocks and physical nature of rock strength, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 1, pp. 1-10. https://doi.org/10.3724/SP.J.1235.2009.00001
  24. Ryu, C. H., 2002a, Review of input parameters of distinct element analysis for modeling the rock mass behavior under quasi-static stress field, ISRM Regional Symposium, Korea-Japan Joint Symp. Rock Engineering Problems and Approaches in Underground Construction, Vol. 2, pp. 801-806.
  25. Ryu, C. H., 2002b, Computer modeling of dynamic ground motion due to explosive blasting and review of some modelling problems, Science and Technology of Energetic Materials, J. of the Japan Explosives Society, Vol. 63, No. 5, pp. 217-222.
  26. Zhao, J. and H. B. Li, 2000, Experimental determination of dynamic tensile properties of a granite, Int. J. Rock Mechanics & Mining Sciences, Vol. 37, pp. 861-866. https://doi.org/10.1016/S1365-1609(00)00015-0
  27. Zhao, J., H. B. Li, M. B. Wub. and T. J. Li,, 1999, Dynamic uniaxial compression tests on a granite, Int. J. Rock Mechanics & Mining Sciences, Vol. 36, pp. 273-277. https://doi.org/10.1016/S0148-9062(99)00008-X