DOI QR코드

DOI QR Code

산 무수물계 및 아민계 경화제를 이용한 열경화성 에폭시 섬유 제조 및 물성

Manufacturing and Mechanical Properties of Epoxy Fibers Spinning using Anhydride and Amine Hardeners

  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Park, Ha-Seung (Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Baek, Yeong-Min (Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 투고 : 2016.12.16
  • 심사 : 2016.12.31
  • 발행 : 2016.12.31

초록

흔히 사용되는 고분자는 다양한 형태로 제조되고 있다. 더 나아가, 나일론, 아라미드와 같은 연속적인 고분자 섬유가 최근에 제조되고 있다. 이번 실험에서 에폭시를 이용하여 고분자 섬유를 제조하였다. 비스페놀-A 타입의 에폭시가 사용되었고, 아민계 및 산 무수물계 경화제가 사용되었다. 에폭시 형상을 유지하기 위해 단계적 승온방식을 이용하여 에폭시 섬유를 경화했다. 계면접착력을 확인하기 위하여 두 섬유에 대한 상대적인 표면에너지를 수정된 정적 접촉각 방식으로 확인하였다. 인장실험을 통하여 기계적인 실험을 실시하였다. 인장실험 후에 파단형태가 경화제에 따라 달라지는 것을 확인하였다. 아민계 경화제를 사용한 에폭시 섬유의 경우 인장강도가 183 MPa로 70 MPa인 산 무수물계 경화제를 사용한 에폭시를 사용한 에폭시 섬유보다 더 좋은 것을 확인하였다.

Commonly-used polymers are manufactured as versatile forms. Furthermore, continuous polymer fibers are recently manufactured using nylon or aramid fiber. One of common epoxy was also used to make polymer fibers. Bisphenol-A type was used as base epoxy whereas amine and anhydride were used as hardeners. Epoxy fibers was cured by stepping up the temperature to maintain the shape of epoxy fiber. Surface energy was measured to confirm the degree of interfacial adhesion by modified static contact angle method. After mechanical properties were measured via fiber tensile test, the evaluation of fiber fracture was proceeded. Tensile strength of epoxy fiber using amine type hardener was higher as 138 MPa than anhydride case as 70 MPa. Fractured surface exhibited different failure patterns at the cross-section.

키워드

참고문헌

  1. Hufenus, R., Gottardo, L., Leal, A.A., Zemp, A., Heutschi, K., Schuetz, P., Meyer, V.R., and Heuberger, M., "Melt-Spun Polymer Fibers with Liquid Core Exhibit Enhanced Mechanical Damping," Materials & Design, Vol. 110, 2016, pp. 685-692. https://doi.org/10.1016/j.matdes.2016.08.042
  2. Li, D., Wu, D., Yang, Z., Zhou, Y., Wang, S., Duan, X., Jia, D., Zhu, Q., and Zhou, Y., "Effects of in situ Amorohour Graphite Coating on Ablation Resistance of SiC Fiber Reinforced SiBCN Ceramics in an Oxyacetylene Flame," Corrosion Science, Vol. 113, 2016, pp. 31-45. https://doi.org/10.1016/j.corsci.2016.10.002
  3. Wang, J., Duan, X., Yang, Z., Jia, D., and Zhou, Y., "Ablation Mechanism and Properties of SiCf/SiBCN Ceramic Composites under an Oxyactylene Torch Environment," Corrosion Science, Vol. 82, 2014, pp. 101-107. https://doi.org/10.1016/j.corsci.2014.01.006
  4. He, z., Xuan, H., Bai, C.., Hu, Y., Cong, P., Bai, H., Miao, Y., and Hong, W., "Containment Tests and Analysis of Soft Wall Casing Fabricated by Wrapping Kevlar Fabric Around Thin Metal Ring," Aerospace Science and Technology, Vol. 61, 2017, pp. 35-44. https://doi.org/10.1016/j.ast.2016.11.018
  5. Sharafi, S., and Li, G., "Multiscale Modeling of Vibration Damping Response of Shape Memory Polymer Fibers," Composites Part B, Vol. 91, 2016, pp. 306-314. https://doi.org/10.1016/j.compositesb.2015.12.046
  6. Sharafi, S., and Li, G., "Multiscale Modeling of Vibration Damping Response of Shape Memory Polymer Fibers," Composites Part B, Vol. 91, 2016, pp. 306-314. https://doi.org/10.1016/j.compositesb.2015.12.046
  7. Yang, W., Bin, Y., Yuan, Y., and Matsuo, M., "Evaluation for Most Probable Distance between Adjacent Amorphous Molecular Chains Taking Preferred Orientation with Respect to a Spinning Fiber," Polymer, Vol. 103, 2016, pp. 112-123. https://doi.org/10.1016/j.polymer.2016.09.029
  8. Stajanca, P., Cetinkaya, O., Schukar, M., Mergo, P., Webb, D.J., and Krebber, K., "Molecular Alignment Relaxation in Polymer Optical Fibers for Sensing Applications," Optical Fiber Technology, Vol. 28, 2016, pp. 11-17. https://doi.org/10.1016/j.yofte.2015.12.006
  9. Zhang, W., Xue, Z., Yan, M., Liu, J., and Xia, Y., "Effect of Epichlorohydrin on the Wet Spinning of Carrageenan Fibersunder Optimal Parameter Conditions," Carbohydrate Polymers, Vol. 150, 2016, pp. 232-240. https://doi.org/10.1016/j.carbpol.2016.05.032
  10. Li, D., Chen, W., Sun, B., Li, H., Wu, T., Ke, Q., Huang, C.., Ei-Hamshary, H., Al-Deyab, S.S., and Mo, X., "A Comparison of Nanoscale and Multiscale PCL/Gelatin Scaffolds Prepared by Disc-Electro spinning," Colloids and Surface B: Biointerfaces, Vol. 146, 2016, pp. 632-641. https://doi.org/10.1016/j.colsurfb.2016.07.009
  11. Chen, R.S., Ahmad, S., Gan, S., Salleh, M.N., Ghani, M.H.A., and Tarawneh, M.A., "Effect of Polymer Blend Matrix Compatibility and Fibre Reinforcement Content on Thermal Stability and Flammability of Ecocomposites Made from Waste Materials," Thermochimica Acta, Vol. 640, 2016, pp. 52-61. https://doi.org/10.1016/j.tca.2016.08.005
  12. Fang, H., Zhang, Y., Deng, J., and Rodrigue, D., "Effect of Fiber Treatment on the Water Absorption and Mechanical Properties of Hemp Fiber/Polyethylene Composites," Journal of Applied Polymer Science, Vol. 127, 2013, pp. 942-949. https://doi.org/10.1002/app.37871
  13. Ahmed, D., Hongpeng, Z., Haijuan, K., Jing, L., Yu, M., and Muhuo, Y., "Microstructural Developments of Poly (p-phenylene terephthalamide) Fibers During Heat Treatment Process: A Review," Materials Research, 2014, Vol. 7, pp. 1180-1200.