DOI QR코드

DOI QR Code

Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade

10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구

  • Kim, Soo-Hyun (Korea Institute of Energy Research, Convergence Materials Laboratory) ;
  • Shin, Hyungki (Korea Institute of Energy Research, Thermal Energy Conversion Laboratory) ;
  • Bang, Hyung-Joon (Korea Institute of Energy Research, Convergence Materials Laboratory)
  • Received : 2016.11.30
  • Accepted : 2016.12.22
  • Published : 2016.12.31

Abstract

In this study, a structural optimal design of 10 MW composite blade was performed using bend-twist coupled(BTC) design concept. Bend-twist coupling of blade means the coupling behavior between the bending and torsional deflections due to the composite lamina with fiber angle biased from the blade longitudinal axis. This can potentially improve the overall performance of composite blade and reduce the dynamic loading. Parametric studies on layup angle, thickness and area of off-axis carbon UD were conducted to find the optimum coupling effect with weight reduction. Comparing the results of fatigue load analysis between conventional model and BTC applied model, the damage equivalent load(DEL) of blade root area were decreased about 3% in BTC model. To verify the BTC effect experimentally, a 1:29 scaled model was fabricated and the torsion at the tip under deflection behavior of blade stiffener model was measured by static load test.

본 연구에서는 굽힘-비틀림 커플링(bend-twist coupled, BTC) 설계개념을 적용한 10 MW급 복합재 풍력 블레이드의 구조 최적 설계를 수행하였다. BTC 설계개념은 동적 하중 상황에서 블레이드의 굽힘과 비틀림 거동 사이의 연동을 유도하여, 단면 받음각 변화에 의한 수동적인 적응 하중저감이 가능하다. 인자연구를 통해 최적의 BTC 설계인자를 추출하여 블레이드 구조설계에 적용하였다. BTC 개념이 동적 하중 감소에 미치는 영향을 가늠하기 위해 블레이드 루트 부에서의 피로등가하중을 계산한 결과, BTC 개념이 적용된 블레이드를 적용한 경우 피로등가하중이 2-3% 정도 감소하는 것을 확인할 수 있었다. BTC 효과를 시험적으로 검증하기 위해 1:29 비율의 블레이드 stiffener 축소모델을 제작하였으며, 정하중 시험을 통해 처짐 거동 시 끝단에서의 비틀림을 측정하였다.

Keywords

References

  1. Kong, C.D., et al., "Investigation on Design and Impact Damage for a 500 W Wind Turbine Composite," The Journal of the Korean Society for Composite Materials, Vol. 21, No. 1, 2009, pp. 22-31.
  2. Park, G., et al., "A Study on Design of 500W Class High Efficiency Horizontal Axis Wind Turbine System(HAWTS) Blade Using Natural Fiber Composites," Composites Research, Vol. 28, No. 3, 2015, pp. 104-111. https://doi.org/10.7234/composres.2015.28.3.104
  3. De Goeij, W.C., Van Tooren, M.J.L., and Beukers, A., "Implementation of Bending-torsion Coupling in the design of a Wind-turbine Rotor-blade," Applied Energy, Vol. 63, No. 3, 1999, pp. 191-207. https://doi.org/10.1016/S0306-2619(99)00016-1
  4. Lobitz, D.W., et al., "The Use of Twist-coupled Blades to Enhance the Performance of Horizontal Axis Wind Turbines," SAND2001-1003, Sandia National Laboratories, Albuquerque, NM, USA, 2001.
  5. Capellaro, M., "Design Challenges for Bend Twist Coupled Blades for Wind Turbines : and Application to Standard Blades," 2012 Sandia Wind Turbine Blade Workshop, USA, 2012.
  6. Buckney, N., Pirrera, A., Weaver, P.M., and Griffith, D.T., "Structural Efficiency Analysis of the Sandia 100 m Wind Turbine Blade," Proceeding of 32nd ASME Wind Energy Symposium, 2014, pp. 0360.
  7. Richards, P.W., Griffith, D.T., and Hodges, D.H., "Aeroelastic Design of Large Wind Turbine Blades Considering Damage Tolerance," Wind Energy, Vol. 20, 2017, pp. 159-170. https://doi.org/10.1002/we.1997
  8. Bak, Christian, et al., "Light Rotor: The 10-MW Reference Wind Turbine," Proceeding of EWEA 2012-European Wind Energy Conference & Exhibition, 2012.
  9. Bayati, I., et al., "On the Aero-elastic Design of the DTU 10 MW Wind Turbine Blade for the LIFES50+ Wind Tunnel Scale Model," Journal of Physics: Conference Series, Vol. 753, No. 2, 2016, pp. 022028.
  10. IEC 61400-1 International Standard, Wind Turbine Generator Systems - Part 1: Safety Requirements.
  11. Griffith, D.T., "An Update on the Sandia 100-meter Blade Project: Large Blade Public Domain Reference Models and Cost Models," Sandia Wind Turbine Blade Workshop, Albuquerque, NM, USA, 2004.
  12. Chow, R., and van Dam, C.P., "Computational Investigations of Blunt Trailing-edge and Twist Modifications to the Inboard Region of the NREL 5 MW Rotor," Wind Energy, Vol. 16, No. 3, 2013, pp. 445-458. https://doi.org/10.1002/we.1505
  13. Kim, S.H., et al., "Composite Structural Analysis of Flat-Back Shaped Blade for Multi-MW Class Wind Turbine," Applied Composite Materials, Vol. 21, No. 3, 2014, pp. 525-539. https://doi.org/10.1007/s10443-013-9362-3
  14. Kim, T., et al., "Numerical Simulation of Flatback Airfoil Aerodynamic Noise," Renewable Energy, Vol. 65, 2014, pp. 192-201. https://doi.org/10.1016/j.renene.2013.08.036
  15. Cesnik, Carlos E.S., and Hodges, D.H., "VABS: A New Concept for Composite Rotor Blade Cross-sectional Modeling," Journal of the American Helicopter Society, Vol. 42, No.1, 1997, pp. 27-38. https://doi.org/10.4050/JAHS.42.27
  16. Germanischer Lloyd: Rules and Guidelines Industrial Services IV - Guideline for the Certification of Wind Turbines, Edition 2010, 2010.
  17. Bossanyi, E.A., "Wind Turbine Control for Load Reduction," Wind Energy, Vol. 6, No. 3, 2003, pp. 229-244. https://doi.org/10.1002/we.95
  18. Kim, S.H., et al., "A Study of the Wake Effects on the Wind Characteristics and Fatigue Loads for the Turbines in a Wind Farm," Renewable Energy, Vol. 74, 2015, pp. 536-543. https://doi.org/10.1016/j.renene.2014.08.054

Cited by

  1. Numerical Analysis of Flatback Trailing Edge Airfoil to Reduce Noise in Power Generation Cycle vol.10, pp.7, 2017, https://doi.org/10.3390/en10070872
  2. CFD investigation on the flatback airfoil effect of 10 MW wind turbine blade vol.32, pp.5, 2018, https://doi.org/10.1007/s12206-018-0418-z
  3. 수지필름 인퓨전 탄소섬유 복합재료를 적용한 무인항공기용 구조체 개발 vol.32, pp.1, 2019, https://doi.org/10.7234/composres.2019.32.1.045
  4. LNGC 경량화를 위한 파이프 지지용 클램프의 복합소재 적용 연구 vol.34, pp.1, 2021, https://doi.org/10.7234/composres.2021.34.1.008