Acknowledgement
Supported by : US DOE
References
- Agar, E., Benjamin, A., Dennison, C.R., Chen, D., Hickner, N.A. and Kumbur, E.C. (2014), "Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents", J. Pow. Sourc., 246, 767-774. https://doi.org/10.1016/j.jpowsour.2013.08.023
-
Agar, E., Knehr, K.W., Chen, D., Hickner, M.A. and Kumbur, E.C. (2013), "Species transport mechanisms governing capacity loss in vanadium flow batteries: Comparing nafion
$^{(R)}$ and sulfonated radel membranes", Electrochim. Acta, 98, 66-74. https://doi.org/10.1016/j.electacta.2013.03.030 - Al-Fetlawi, H., Shah, A.A. and Walsh, F.C. (2010), "Modelling the effects of oxygen evolution in the all-vanadium redox flow battery", Electrochim. Acta, 55(9), 3192-3205. https://doi.org/10.1016/j.electacta.2009.12.085
- Badrinarayanan, R., Zhao, J., Tseng, K.J. and Skyllas-Kazacos, M. (2014), "Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer", J. Pow. Sourc., 270, 576-586. https://doi.org/10.1016/j.jpowsour.2014.07.128
- Boettcher, P.A., Agar, E., Dennison, CR. and Kumbur, E.C. (2016), "Modeling of ion crossover in vanadium redox flow batteries: A computationally-efficient lumped parameter approach for extended cycling", J. Electrochem. Soc., 163(1), A5244-A5252. https://doi.org/10.1149/2.0311601jes
- Chen, C.L., Yeoh, H.K. and Chakrabarti, M.H. (2014), "An enhancement to Vynnycky's model for the all-vanadium redox flow battery", Electrochim. Acta, 120, 167-179. https://doi.org/10.1016/j.electacta.2013.12.074
- Clement, J.T., Aaron, D.S. and Mench, M.M. (2016), "In situ localized current distribution measurements in all-vanadium redox flow batteries", J. Electrochem. Soc., 163(1), A5220-A5228. https://doi.org/10.1149/2.0241601jes
- Ge, J., Xing, W., Xue, X., Liu, C., Lu, T. and Liao, J. (2007), "Controllable synthesis of pd nanocatalysts for direct formic acid fuel cell (DFAFC) application: From pd hollow nanospheres to pd nanoparticles", J. Phys. Chem. C, 111(46), 17305-17310. https://doi.org/10.1021/jp073666p
- Kim, S., Yan, J., Schwenzer, B., Zhang, J., Li., L., Liu, J., Yang, Z. and Hickner, M.A. (2010), "Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries", Electrochem. Comm., 12(11), 1650-1653. https://doi.org/10.1016/j.elecom.2010.09.018
- Knehr, K.W. and Kumbur, E.C. (2012), "Role of convection and related effects on species crossover and capacity loss in vanadium redox flow batteries", Electrochem. Comm., 23, 76-79. https://doi.org/10.1016/j.elecom.2012.07.008
- Lei, Y., Zhang, B.W., Bai, B.F. and Zhang, T.S. (2015), "A transient electrochemical model incorporating the donnan effect for all-vanadium redox flow batteries", J. Pow. Sourc., 299, 202-211. https://doi.org/10.1016/j.jpowsour.2015.08.100
- Liu, F. and Siddique, N.A. (2011), "Microstructure reconstruction and direct evaluation of li-ion battery cathodes", ECS Tran., 33(24), 25-32.
- Liu, F. and Wang, C.Y. (2006), "Optimization of cathode catalyst layer for direct methanol fuel cells: Part II: Computational modeling and design", Electrochim. Acta, 52(3), 1409-1416. https://doi.org/10.1016/j.electacta.2006.07.060
- Luo, Q., Li, L., Wang, W., Nie, Z., Wei, X., Li, B., Chen, B., Yang, Z. and Sprenkle, V. (2013), "Capacity decay and remediation of nafion-based all-vanadium redox flow batteries", ChemSusChem, 6(2)268-274. https://doi.org/10.1002/cssc.201200730
- Park, S.M. and Kim, H. (2015), "Hybrid membranes with low permeability for vanadium redox flow batteries using in situ sol-gel process", Korean J. Chem. Eng., 32(12), 2434-2442. https://doi.org/10.1007/s11814-015-0077-z
- Pezeshki, A.M., Tang, Z.J., Fujimoto, C., Sun, C.N., Mench, M.M. and Zawodzinski, T.A. (2016), "Full cell study of diels alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries", J. Electrochem. Soc., 163(1), A5154-A5162. https://doi.org/10.1149/2.0201601jes
- Roznyatovskaya, N., Herr, T., Kuttinger, M. Fuhl, M., Noack, J., Pinkwark, K. and Tubke, J.(2016), "Detection of capacity imbalance in vanadium electrolyte and its electrochemical regeneration for all-vanadium redox flow batteries", J. Pow. Sourc., 302, 79-83. https://doi.org/10.1016/j.jpowsour.2015.10.021
- Siddique, N., Salehi, A. and Liu, F. (2012), "Stochastic reconstruction and electrical transport studies of porous cathode of li-ion batteries", J. Pow. Sources, 217, 437-443. https://doi.org/10.1016/j.jpowsour.2012.05.121
- Siddique, N.A., Allen, A.M., Mukherjee, P.P. and Liu, F. (2014), "Simulation of effect of interfacial lithium flux on miscibility gap in non-equilibrium phase transformation of LiFePO4 particles", J. Pow. Sourc., 245, 83-88. https://doi.org/10.1016/j.jpowsour.2013.06.082
- Siddique, N.A. and, Liu, F. (2010) "Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer", Electrochim. Acta, 55(19), 5357-5366. https://doi.org/10.1016/j.electacta.2010.04.059
- Skyllas-Kazacos, M. and Goh, L. (2012), "Modeling of vanadium ion diffusion across the ion exchange membrane in the vanadium redox battery", J. Membrane Sci., 399-400, 43-48. https://doi.org/10.1016/j.memsci.2012.01.024
- Sun, C., Chen, J., Zhang, H., Han, X. and Luo, Q. (2010), "Investigations on transfer of water and vanadium ions across nafion membrane in an operating vanadium redox flow battery", J. Pow. Sourc., 195(3), 890-897. https://doi.org/10.1016/j.jpowsour.2009.08.041
- Suresh, G., Scindia, Y.M., Pandey, A.K. and Goswami, A. (2005), "Self-diffusion coefficient of water in nafion-117 membrane with different monovalent counterions: A radiotracer study", J. Membrane Sci., 250(1-2), 39-45. https://doi.org/10.1016/j.memsci.2004.10.013
- Tang, A., Bao, J. and Skyllas-Kazacos, M. (2011), "Dynamic modelling of the of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery", J. Pow. Sourc., 196(24), 10737-10747. https://doi.org/10.1016/j.jpowsour.2011.09.003
- Won, S., Oh, K. and Ju, H. (2015), "Numerical analysis of vanadium crossover effects in all-vanadium redox flow batteries", Electrochim. Acta, 177, 310-320. https://doi.org/10.1016/j.electacta.2015.01.166
- You, D., Zhang, H. and Chen, J. (2009), "A simple model for the vanadium redox battery", Electrochim. Acta, 54(27), 6827-6836. https://doi.org/10.1016/j.electacta.2009.06.086
Cited by
- An integrated solar cell with built-in energy storage capability vol.349, pp.None, 2020, https://doi.org/10.1016/j.electacta.2020.136368