DOI QR코드

DOI QR Code

Numerical study of effect of membrane properties on long-cycle performance of vanadium redox flow batteries

  • Wei, Zi (Department of Mechanical Engineering University of Massachusetts Lowell) ;
  • Siddique, N.A. (Department of Materials Science and Engineering University of Texas at Arlington) ;
  • Liu, Dong (Department of Materials Science and Engineering University of Texas at Arlington) ;
  • Sakri, Shambhavi (Department of Materials Science and Engineering University of Texas at Arlington) ;
  • Liu, Fuqiang (Department of Mechanical Engineering University of Massachusetts Lowell)
  • Received : 2016.05.12
  • Accepted : 2016.11.22
  • Published : 2016.12.25

Abstract

Fundamental understanding of vanadium ion transport and the detrimental effects of cross-contamination on vanadium redox flow battery (VRFB) performance is critical for developing low-cost, robust, and highly selective proton-conducting membranes for VRFBs. The objective of this work is to examine the effect of conductivity and diffusivity, two key membrane parameters, on long-cycle performance of a VRFB at different operating conditions using a transient 2D multi-component model. This single-channel model combines the transport of vanadium ions, chemical reactions between permeated ions, and electrochemical reactions. It has been discovered that membrane selecting criterion for long cycles depends critically on current density and operating voltage range of the cell. The conducted simulation work is also designed to study the synergistic effects of the membrane properties on dynamics of VRFBs as well as to provide general guidelines for future membrane material development.

Keywords

Acknowledgement

Supported by : US DOE

References

  1. Agar, E., Benjamin, A., Dennison, C.R., Chen, D., Hickner, N.A. and Kumbur, E.C. (2014), "Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents", J. Pow. Sourc., 246, 767-774. https://doi.org/10.1016/j.jpowsour.2013.08.023
  2. Agar, E., Knehr, K.W., Chen, D., Hickner, M.A. and Kumbur, E.C. (2013), "Species transport mechanisms governing capacity loss in vanadium flow batteries: Comparing nafion$^{(R)}$ and sulfonated radel membranes", Electrochim. Acta, 98, 66-74. https://doi.org/10.1016/j.electacta.2013.03.030
  3. Al-Fetlawi, H., Shah, A.A. and Walsh, F.C. (2010), "Modelling the effects of oxygen evolution in the all-vanadium redox flow battery", Electrochim. Acta, 55(9), 3192-3205. https://doi.org/10.1016/j.electacta.2009.12.085
  4. Badrinarayanan, R., Zhao, J., Tseng, K.J. and Skyllas-Kazacos, M. (2014), "Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer", J. Pow. Sourc., 270, 576-586. https://doi.org/10.1016/j.jpowsour.2014.07.128
  5. Boettcher, P.A., Agar, E., Dennison, CR. and Kumbur, E.C. (2016), "Modeling of ion crossover in vanadium redox flow batteries: A computationally-efficient lumped parameter approach for extended cycling", J. Electrochem. Soc., 163(1), A5244-A5252. https://doi.org/10.1149/2.0311601jes
  6. Chen, C.L., Yeoh, H.K. and Chakrabarti, M.H. (2014), "An enhancement to Vynnycky's model for the all-vanadium redox flow battery", Electrochim. Acta, 120, 167-179. https://doi.org/10.1016/j.electacta.2013.12.074
  7. Clement, J.T., Aaron, D.S. and Mench, M.M. (2016), "In situ localized current distribution measurements in all-vanadium redox flow batteries", J. Electrochem. Soc., 163(1), A5220-A5228. https://doi.org/10.1149/2.0241601jes
  8. Ge, J., Xing, W., Xue, X., Liu, C., Lu, T. and Liao, J. (2007), "Controllable synthesis of pd nanocatalysts for direct formic acid fuel cell (DFAFC) application: From pd hollow nanospheres to pd nanoparticles", J. Phys. Chem. C, 111(46), 17305-17310. https://doi.org/10.1021/jp073666p
  9. Kim, S., Yan, J., Schwenzer, B., Zhang, J., Li., L., Liu, J., Yang, Z. and Hickner, M.A. (2010), "Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries", Electrochem. Comm., 12(11), 1650-1653. https://doi.org/10.1016/j.elecom.2010.09.018
  10. Knehr, K.W. and Kumbur, E.C. (2012), "Role of convection and related effects on species crossover and capacity loss in vanadium redox flow batteries", Electrochem. Comm., 23, 76-79. https://doi.org/10.1016/j.elecom.2012.07.008
  11. Lei, Y., Zhang, B.W., Bai, B.F. and Zhang, T.S. (2015), "A transient electrochemical model incorporating the donnan effect for all-vanadium redox flow batteries", J. Pow. Sourc., 299, 202-211. https://doi.org/10.1016/j.jpowsour.2015.08.100
  12. Liu, F. and Siddique, N.A. (2011), "Microstructure reconstruction and direct evaluation of li-ion battery cathodes", ECS Tran., 33(24), 25-32.
  13. Liu, F. and Wang, C.Y. (2006), "Optimization of cathode catalyst layer for direct methanol fuel cells: Part II: Computational modeling and design", Electrochim. Acta, 52(3), 1409-1416. https://doi.org/10.1016/j.electacta.2006.07.060
  14. Luo, Q., Li, L., Wang, W., Nie, Z., Wei, X., Li, B., Chen, B., Yang, Z. and Sprenkle, V. (2013), "Capacity decay and remediation of nafion-based all-vanadium redox flow batteries", ChemSusChem, 6(2)268-274. https://doi.org/10.1002/cssc.201200730
  15. Park, S.M. and Kim, H. (2015), "Hybrid membranes with low permeability for vanadium redox flow batteries using in situ sol-gel process", Korean J. Chem. Eng., 32(12), 2434-2442. https://doi.org/10.1007/s11814-015-0077-z
  16. Pezeshki, A.M., Tang, Z.J., Fujimoto, C., Sun, C.N., Mench, M.M. and Zawodzinski, T.A. (2016), "Full cell study of diels alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries", J. Electrochem. Soc., 163(1), A5154-A5162. https://doi.org/10.1149/2.0201601jes
  17. Roznyatovskaya, N., Herr, T., Kuttinger, M. Fuhl, M., Noack, J., Pinkwark, K. and Tubke, J.(2016), "Detection of capacity imbalance in vanadium electrolyte and its electrochemical regeneration for all-vanadium redox flow batteries", J. Pow. Sourc., 302, 79-83. https://doi.org/10.1016/j.jpowsour.2015.10.021
  18. Siddique, N., Salehi, A. and Liu, F. (2012), "Stochastic reconstruction and electrical transport studies of porous cathode of li-ion batteries", J. Pow. Sources, 217, 437-443. https://doi.org/10.1016/j.jpowsour.2012.05.121
  19. Siddique, N.A., Allen, A.M., Mukherjee, P.P. and Liu, F. (2014), "Simulation of effect of interfacial lithium flux on miscibility gap in non-equilibrium phase transformation of LiFePO4 particles", J. Pow. Sourc., 245, 83-88. https://doi.org/10.1016/j.jpowsour.2013.06.082
  20. Siddique, N.A. and, Liu, F. (2010) "Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer", Electrochim. Acta, 55(19), 5357-5366. https://doi.org/10.1016/j.electacta.2010.04.059
  21. Skyllas-Kazacos, M. and Goh, L. (2012), "Modeling of vanadium ion diffusion across the ion exchange membrane in the vanadium redox battery", J. Membrane Sci., 399-400, 43-48. https://doi.org/10.1016/j.memsci.2012.01.024
  22. Sun, C., Chen, J., Zhang, H., Han, X. and Luo, Q. (2010), "Investigations on transfer of water and vanadium ions across nafion membrane in an operating vanadium redox flow battery", J. Pow. Sourc., 195(3), 890-897. https://doi.org/10.1016/j.jpowsour.2009.08.041
  23. Suresh, G., Scindia, Y.M., Pandey, A.K. and Goswami, A. (2005), "Self-diffusion coefficient of water in nafion-117 membrane with different monovalent counterions: A radiotracer study", J. Membrane Sci., 250(1-2), 39-45. https://doi.org/10.1016/j.memsci.2004.10.013
  24. Tang, A., Bao, J. and Skyllas-Kazacos, M. (2011), "Dynamic modelling of the of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery", J. Pow. Sourc., 196(24), 10737-10747. https://doi.org/10.1016/j.jpowsour.2011.09.003
  25. Won, S., Oh, K. and Ju, H. (2015), "Numerical analysis of vanadium crossover effects in all-vanadium redox flow batteries", Electrochim. Acta, 177, 310-320. https://doi.org/10.1016/j.electacta.2015.01.166
  26. You, D., Zhang, H. and Chen, J. (2009), "A simple model for the vanadium redox battery", Electrochim. Acta, 54(27), 6827-6836. https://doi.org/10.1016/j.electacta.2009.06.086

Cited by

  1. An integrated solar cell with built-in energy storage capability vol.349, pp.None, 2020, https://doi.org/10.1016/j.electacta.2020.136368