DOI QR코드

DOI QR Code

Environmental Characteristics of the Diatom in the Trench Sediments Around Bangudae Petroglyphs, Ulsan

울산 반구대 암각화 인근 트렌치 퇴적물 내 규조의 환경 특성

  • Bak, Young-Suk (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Ryu, Choon Kil (Korea Institute of Geological Environments) ;
  • Cho, Mi-Soon (National Research Institute of Cultural Heritage)
  • 박영숙 (전북대학교 자연과학대학 지구환경과학과) ;
  • 류춘길 (한국지질환경연구소) ;
  • 조미순 (국립문화재연구소)
  • Received : 2015.12.14
  • Accepted : 2016.01.08
  • Published : 2016.02.29

Abstract

Diatoms were studied from the trench sediments around Bangudae petroglyphs in order to better understand the depositional environment before and after the construction of Sayeon dam in Ulsan. There were no diatoms produced from the sediments before the dam construction while the diatoms were produced from the sediments (depth of trench 228 cm) after the construction of the dam. Seventy-five species of diatoms of 27 genera were identified in the trench sediments. The number of diatom valves per gram of dry sediment ranged from $0.2-5.8{\times}10^5g^{-1}$. Four diatom assemblage zones were identified according to the frequency of critical taxa as follows: assemblage zone I, from 228 to 150 cm; assemblage zone II, from 150 to 122 cm; assemblage zone III, from 122 to 62 cm; and assemblage zone IV, from 62 to 0 cm. In addition, based on the environmental indicator species, an analysis was carried out to measure eutrophication, acidity and $Cl^-$ value. Results of the eutrophication and $Cl^-$ values were as follows. Based on the lower 74 cm horizons, the degree of eutrophication middle-high to $Cl^-$ values were lower, upper horizons appeared to eutrophication in the low, and $Cl^-$ values were high. Acidification from low horizons of 122 cm showed a neutral-alkaline degree whereas it exhibited acid in the upper part. In particular, regarding nutrients (TP and TN), the index taxa showed a higher TP value at 175 cm while higher TN value at 62 cm.

울산 반구대 암각화 부근에 분포하는 퇴적층을 대상으로 사연댐 건설 전과 후의 퇴적환경을 알아보기 위해서 규조를 연구하였다. 사연댐 건설 이전의 하부 퇴적층으로 부터는 규조가 산출되지 않았으며, 사연댐 건설 이후의 퇴적층(두께 228 cm)으로부터 규조가 감정되었다. 규조는 총 27속 75종이 산출 되었으며 개체수 농도의 범위가 $0.2{\times}10^5-5.8{\times}10^5g^{-1}$로 나타났다. 연구지역에서 산출된 규조 종의 산출분포에 의해서 사연댐 건설 후 퇴적된 퇴적물로부터 4개의 군집대를 설정하였다; 규조 군집대 I: 228-150 cm, 규조 군집대 II: 150-122 cm, 규조 군집대 III: 122-62 cm, 규조 군집대 IV: 62-0 cm. 또한, 환경지시종에 따라 부영양화, 산성도, $Cl^-$ 값 등에 대한 해석을 수행하였다. 부영양화와 $Cl^-$ 값에 대한 결과는 74 cm 층준을 기준으로 하부 층준에서는 부영양화의 정도가 중간-높음으로 $Cl^-$ 값은 낮게 나타났으며, 상부 층준에서는 부영양화가 낮음, $Cl^-$ 값이 높음으로 나타났다. 산성화의 정도는 122 cm 층준의 하부에서는 중성-알칼리성을 띠며 상부에서는 산성을 나타내었다. 특히, 영양염류의 경우, 175 cm 층준에서는 TP값이 높고, 62 cm 층준에서는 TN값이 높게 나타났다

Keywords

References

  1. Bak, Y.S., Kim, M.J., Lee, J.D. and Goo, J.J., 2006, Paleoenvironments of the Quaternary sediments from the Seokrim-Dong, Seosan, based on diatom assemblage. Journal of the Geological Society of Korea. 42(4), 549-559.
  2. Bak, Y.S., Lee, J.D., Yang, D.Y, Nahm, W.H. and Yi, S., 2007, Diatom assemblage from the Quaternary sediment in the Buryang-Myeon, Gimje, and its paleoenvironmental implication. Journal of the Geological Society of Korea, 23(1), 105-113.
  3. Beyene, A., Awoke, A. and Triest, L. 2014. Validation of a quantitative method for estimating the indicator power of diatoms for ecoregional river water quality assessment. Ecological indicators. 37, 58-66. https://doi.org/10.1016/j.ecolind.2013.09.025
  4. Freund, H., Gerdes, G., Strief, H., Dellwig, O., and Watermann, F., 2004. The indicative meaning of diatoms, pollen and botanical macro fossils for the reconstruction of palaeoenvironments and sea-level fluctuations along the coast of Lower Saxony; Germany, Quaternary International, 112, 71-87. https://doi.org/10.1016/S1040-6182(03)00066-1
  5. Harrison, P.J. and Turpin, D.H., 1982. The manipulations of physical, chemical and biological factors to select species from natural phytoplankton community. In Marine Mesocosm. 275-289.
  6. Hwang, S.I., 1998, The Holocene Depositional Environment and Sea-Level Change at Ilsan Area. Journal of the Korean Geographical Society, 33(2), 143-163.
  7. Hwang, S.I., Yoon, S.O. and Jo, W.R., 1997, The change of the depositional environment on Dodaecheon River Basin during the Middle Holocene. Journal of the Korean Geographical Society, 32(4), 403-420.
  8. Jo, W.R., 1986, The Geomorphic Development of Alluvial Plain in the Man-Kyong River Sides. Journal of Educational Research, Kyungpook National University, 28, 19-35.
  9. Kashima, K., 2003, The quantitative reconstruction of salinity changes using diatom assemblages in inland saline lakes in the central part of Turkey during the Late Quaternary, Quaternary International, 105, 13-19. https://doi.org/10.1016/S1040-6182(02)00145-3
  10. Kato, M., Tanimura, Y., and Fukusawa, H., 2004. Survival strategy of diatom species living on now-depositing non-glacial varves, Quaternary International, 123-125, 21-26. https://doi.org/10.1016/j.quaint.2004.02.004
  11. Kelly, M.G. and Whitton, B.A. 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology. 7, 433-444. https://doi.org/10.1007/BF00003802
  12. Lapointe, M., 2000. Modern diatom assemblages in surface sediments from the marine estuary and the gulf of St. Lawrence, Quebec Canada. Marine Micropaleontology, 40, 43-65. https://doi.org/10.1016/S0377-8398(00)00031-1
  13. Lee, C.H., Chun, Y.G., Jo, Y.H. and Suh, M., Evaluation of slope stability and deterioration degree for Bangudae Petroglyphs in Ulsan, Korea. Journal of Conservation Science, 28(2), 153-164. https://doi.org/10.12654/JCS.2012.28.2.153
  14. Lee, S.H. and Cho, H.J., 2013, Analysis of the water quality change due to water level control of sayeon dam. Journal of korea water resources association, 46(11), 1069-1078. https://doi.org/10.3741/JKWRA.2013.46.11.1069
  15. Lee, Y.G., Park, Y.A. and Choi, J.Y., 1994, Sedimentary facies and micropaleotological study of the tidal sediment in the Northwestern Part of Namyang Bay, Yellow Sea, Korea. Journal of the Geological Society of Korea, 10(1), 26-40.
  16. Lee, Y.G., Park, Y.A. and Choi, J.Y., 1995, Sedimentary facies and micropaleontological study of tidal sediments off the Mankyung-Dongjin River estuary, west coast of Korea. The Journal of the Korean Society of Oceanography, 30(2), 77-90.
  17. Lee, Y.J. and Lee, I.K., 1972, Explonatory Text of the Geological Map of Eon Yang Sheet. Geological Survey of Korea, 1-20.
  18. Lim, J.D., Kong, D.Y., Kim, T.H., Jeong, S.H. and Yu, Y.W., 2012, Geological heritage around of Daegokcheon Petroglyphs group, Ulsan. National Research Institute of Cultural Heritage, 187 p.
  19. Lius, A.T., Teixeira, P. Almeida,S.F.P., Ector, L., Matos, J.X and da Silva, E.A.F. 2009. Impact of acid mine drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the surrounding streams of Aljusttrel mining area (Portugal). Water, Air and Soil pollution. 200, 147-167. https://doi.org/10.1007/s11270-008-9900-z
  20. Lobo, E.A., Callegaro, V.L.M., Hermany, G., Bes, D., Wetel, C.A. and Oliveira, M.A., 2004. Use of epilithic diatoms as biondicators from lotic systems in southern Brazil, with special emphasis on eutrophication. Acta limnol. Bras., 16(1), 25-40.
  21. Mitbavkar, S. and Anil, A.C., 2002. Diatoms of the microphytobenthic community: population structure in a tropical intertidal sand flat. Mar. Biol., 140, 41-57. https://doi.org/10.1007/s002270100686
  22. Negro, A.I., De Hoyos, C. and Aldasoro, J.J. 2003. Diatom and desmid relationships with the environment in mountain lakes and mires of NW Spain. Hydrobiologia. 505, 1-13. https://doi.org/10.1023/B:HYDR.0000007212.78065.c1
  23. Ojala, A.E.K., Heinsalu, A., Saarnisto, M., and Tiljander, M., 2005, Annually laminated sediments date the drainage of the Ancylus Lake and early Holocene shoreline displacement in central Finland, Quaternary International, 130, 63-73. https://doi.org/10.1016/j.quaint.2004.04.032
  24. Ryu, E., Nahm, W-H., Yang, D-Y., and Kim, J-Y., 2005, Diatom Floras of a Western Coastal Wetland in Korea: Implication for Late Quaternary Paleoenvironment. Journal of the Paleontological Society of Korea, 41(2), 227-239.
  25. Scherer, R.P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12(2), 171-180. https://doi.org/10.1007/BF00678093
  26. Shim, J.H., 2003, Plankton Ecology. Seoul National University Press, 348 p.
  27. Strenger-Kovacs, C., Lengyel, E., Crossetti, L.O., Uveges, V. and Padisak, J. 2013. Diatom ecological guilds as indicators of temporally changing stressors and distribances in the small Torna-stream, Hungary. Ecological Indicators. 24, 138-147. https://doi.org/10.1016/j.ecolind.2012.06.003
  28. Tien, C.J., 2004, Some aspects of water quality ina polluted lowland river in relation to the intracellular chemical levels in planktonic and epilithic diatoms Chien-Jung Tien, Water Research 38, 1779-1790. https://doi.org/10.1016/j.watres.2003.12.043
  29. Vos, P.C. and Gerrets, D.A., 2005, Archaeology: a major tool in the reconstruction of the coastal evolution of Westergo (northern Netherlands), Quaternary International, 133-134, 61-75. https://doi.org/10.1016/j.quaint.2004.10.008
  30. Yabe, H., Yasui, S., Urabe, A., and Takahama N., 2004, Holocene paleoenvironmental changes inferred from the diatom records of the Echigo Plain, central Japan, Quaternary International, 115-116, 117-130. https://doi.org/10.1016/S1040-6182(03)00101-0
  31. Werner, D., 1977. The biology of diatoms. Botanical Monographs. 13, 498 pp.