DOI QR코드

DOI QR Code

Effect of Freezing and Sintering Condition of CuO-SnO2/Camphene Slurries on the Pore Structure of Porous Cu-Sn

CuO-SnO2/camphene 슬러리의 동결 및 소결조건이 Cu-Sn 다공체의 기공구조에 미치는 영향

  • Kim, Joo-Hyung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hyun, Chang-Yong (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 김주형 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과) ;
  • 현창용 (서울과학기술대학교 신소재공학과)
  • Received : 2016.01.12
  • Accepted : 2016.02.04
  • Published : 2016.02.28

Abstract

The present study demonstrates the effect of freezing conditions on the pore structure of porous Cu-10 wt.% Sn prepared by freeze drying of $CuO-SnO_2$/camphene slurry. Mixtures of CuO and $SnO_2$ powders are prepared by ball milling for 10 h. Camphene slurries with 10 vol.% of $CuO-SnO_2$ are unidirectionally frozen in a mold maintained at a temperature of $-30^{\circ}C$ for 1 and 24 h, respectively. Pores are generated by the sublimation of camphene at room temperature. After hydrogen reduction and sintering at $650^{\circ}C$ for 2 h, the green body of the $CuO-SnO_2$ is completely converted into porous Cu-Sn alloy. Microstructural observation reveals that the sintered samples have large pores which are aligned parallel to the camphene growth direction. The size of the large pores increases from 150 to $300{\mu}m$ with an increase in the holding time. Also, the internal walls of the large pores contain relatively small pores whose size increases with the holding time. The change in pore structure is explained by the growth behavior of the camphene crystals and rearrangement of the solid particles during the freezing process.

Keywords

References

  1. H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091. https://doi.org/10.1016/j.pmatsci.2006.09.001
  2. M. J. Suk and Y. S. Kwon: J. Korean Powder Metall. Inst., 8 (2001) 215 (Korean).
  3. P. S. Liu and K. M. Liang: J. Mater. Sci., 36 (2001) 5059. https://doi.org/10.1023/A:1012483920628
  4. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  5. D. H. Yang, B. Y. Hur and S. R. Yang: J. Alloys Comp., 461 (2008) 221. https://doi.org/10.1016/j.jallcom.2007.07.098
  6. S.-H. Kim, Y.-W. Kim, J.-Y. Yun and H.-D. Kim: J. Korean Ceram. Soc., 41 (2004) 541 (Korean). https://doi.org/10.4191/KCERS.2004.41.7.541
  7. Z.-Y. Deng, J.-F. Yang, Y. Beppu, M. Ando and T. Ohji: J. Am. Ceram. Soc., 85 (2002) 1961. https://doi.org/10.1111/j.1151-2916.2002.tb00388.x
  8. S. Deville: Adv. Eng. Mater., 10 (2008) 155. https://doi.org/10.1002/adem.200700270
  9. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  10. B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am. Ceram. Soc., 90 (2007) 1753. https://doi.org/10.1111/j.1551-2916.2007.01703.x
  11. S.-R. Bang and S.-T. Oh: J. Korean Powder Metall. Inst., 21 (2014) 191 (Korean). https://doi.org/10.4150/KPMI.2014.21.3.191
  12. K. C. Jeon, B. S. Kim, Y. D. Kim, M.-J. Suk and S.-T. Oh: Int. J. Refract. Met. Hard Mater., 53 (2015) 32. https://doi.org/10.1016/j.ijrmhm.2015.04.021
  13. M.-S. Kim, H.-S. Yoo, S.-T. Oh and C.-Y. Hyun: Kor. J. Mater. Res., 23 (2013) 722 (Korean). https://doi.org/10.3740/MRSK.2013.23.12.722
  14. O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre:Talanta, 50 (1999) 445. https://doi.org/10.1016/S0039-9140(99)00129-0
  15. B.-H. Yoon, W.-Y. Choi, H.-E. Kim, J.-H. Kim and Y.-H. Koh: Scr. Mater., 58 (2008) 537. https://doi.org/10.1016/j.scriptamat.2007.11.006
  16. K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.
  17. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966. https://doi.org/10.1038/nmat2571

Cited by

  1. Fabrication of Al2O3 Dispersed Porous Cu by Freeze Drying of CuO-Al2O3/Camphene Slurry vol.25, pp.1, 2018, https://doi.org/10.4150/KPMI.2018.25.1.25