DOI QR코드

DOI QR Code

Fabrication of Silver Flake Powder by the Mechanical Milling Process

기계적 밀링공정에 의한 은 플레이크 분말 제조

  • Jeong, Hae-Young (Department of Materials System Engineering, Pukyong National University) ;
  • Lee, Gil-Geun (Department of Materials System Engineering, Pukyong National University)
  • 정해영 (부경대학교 신소재시스템공학과) ;
  • 이길근 (부경대학교 신소재시스템공학과)
  • Received : 2016.02.03
  • Accepted : 2016.02.16
  • Published : 2016.02.28

Abstract

This study focuses on fabricating silver flake powder by a mechanical milling process and investigating the formation of flake-shaped particles during milling. The silver flake powder is fabricated by varying the mechanical milling parameters such as the amount of powder, ball size, impeller rotation speed, and milling time of the attrition ballmill. The particle size of the silver flake powder decreases with increasing amount of powder; however, it increases with increasing impeller rotation speed. The change in the particle size of the silver flake powder is analyzed based on elastic collision between the balls, taking energy loss of the balls due to the powder into consideration. The change in the particle size of the silver flake powder with mechanical milling parameters is consistent with the change in the diameter of the elastic deformation contact area of the ball, due to the collision between the balls, with milling parameters. The flake-shaped silver particles are formed at the elastic deformation contact area of the ball due to the collision.

Keywords

References

  1. J. Oprosky and D. Stotka: USA, US 5,346,651 (1993).
  2. V. Paneccasio and M. P. Chasse: USA, US 6,013,203 (1998).
  3. Yi Li, D. Lu and C. P. Wong: Electrical Conductive Adhesives with Nanotechnologies, Springer, NewYork (2010) 121.
  4. H. W. Cui, A. Kowalczyk, D. S. Li and Q. Fan: Int. J. Adhes. Adhes., 44 (2013) 220. https://doi.org/10.1016/j.ijadhadh.2013.03.004
  5. E. Sancaktar and N. Dilsiz: J. Adhes. Sci. Technol., 13 (1999) 679. https://doi.org/10.1163/156856199X00938
  6. E. Suhir, Y. C. Lee and C. P. Wong: Micro- and Opto- Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging Vol. 1 Chapter 21, Springer, New York (2007) 571.
  7. W. Songping: J. Mater. Sci. Mater. El., 18 (2007) 447.
  8. P. R. Santhanam, A. Ermoline and E. L. Dreizin: Chem. Eng. Sci., 101 (2013) 366. https://doi.org/10.1016/j.ces.2013.06.048
  9. P. R. Santhanam and E. L. Dreizin: Powder. Technol., 221 (2012) 403. https://doi.org/10.1016/j.powtec.2012.01.037
  10. D. W. Lee, B. K. Kim, G. G. Lee and G. H. Ha: J. Korean Powder Metall. Inst., 3 (1996) 159 (Korean).
  11. G. G. Lee, D. W. Lee, G. H. Ha and B. K. Kim: J. Jpn. Soc. Powd. Met., 43 (1996) 1253. https://doi.org/10.2497/jjspm.43.1253
  12. G. G. Lee and H. Y. Jeong: J. Korean Powder Metall. Inst., 21 (2014) 307 (Korean). https://doi.org/10.4150/KPMI.2014.21.4.307
  13. S. P. Timoshenko and J. N. Goodier: Theory of Elasticity, 3rd Ed., McGraw-Hill, NewYork (1970) 420.
  14. K. S. Venkataraman and K. S. Narayanan: Powder. Technol., 96 (1998) 190. https://doi.org/10.1016/S0032-5910(97)03368-8
  15. R. M. German: Powder Metallurgy and Particulate Materials Processing, The Processes, Materials, Products, Properties, and Applications, Metal Powder Industries Federation, New Jersey (2005) 186.
  16. X. H. Yang, J. X. Bai, H. B. Yan, J. J. Kuang, T. J. Lu and T. Kim: Transp. Porous. Med., 102 (2014) 403. https://doi.org/10.1007/s11242-014-0281-z
  17. D. R. Maurice and T. H. Courtney: Metall. Trans. A, 21A (1990) 289.

Cited by

  1. Fabrication of WC/Co composite powder from oxide of WC/Co hardmetal scrap by carbothermal reduction process vol.25, pp.3, 2018, https://doi.org/10.4150/KPMI.2018.25.3.240