참고문헌
- Altair, 2013. HyperWorks 12.0 User Manual. Altair.
- ASTM E8, 2004. Standard Test Methods of Tension Testing of Metallic Materials. American Society for Testing and Materials.
- Bao, Y., Wierzbicki, T., 2004. On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space. International Journal of Mechanical Sciences, 46(1), 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
- Bao, Y., 2005. Dependence of Ductile Crack Formation in Tensile Tests on Stress Triaxiality, Stress and Strain Ratios. Engineering Fracture Mechanics, 72(4), 505-522. https://doi.org/10.1016/j.engfracmech.2004.04.012
- Bai, Y., Wierzbicki, T., 2008. A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence. International Journal of Plasticity, 24(6), 1071-1096. https://doi.org/10.1016/j.ijplas.2007.09.004
- Basu, S., Benzerga, A.A., 2015. On the path-dependence of the fracture locus in ductile materials: Experiments. International Journal of Solids and Structures, 71, 79-90. https://doi.org/10.1016/j.ijsolstr.2015.06.003
- Benzerga, A.A., Surovik, D., Keralavarma, S.M., 2012. On the Path-dependence of the Fracture Locus in Ductile Materials-analysis. International Journal of Plasticity, 37, 157-170. https://doi.org/10.1016/j.ijplas.2012.05.003
- Choung, J., Cho, S.R., 2008a. Experimental and Theoretical Investigations on the Fracture Criteria for Structural Steels. Journal of the Society of Naval Architects of Korea, 45(2), 157-167. https://doi.org/10.3744/SNAK.2008.45.2.157
- Choung, J., Cho, S.R., 2008b. Study on true stress correction from tensile tests. Journal of Mechanical Science and Technology, 22, 1039-1051. https://doi.org/10.1007/s12206-008-0302-3
- Choung, J., 2009a. Comparative Studies of Fracture Models for Marine Structural Steels. Ocean Engineering, 36(15), 1164-1174. https://doi.org/10.1016/j.oceaneng.2009.08.003
- Choung, J., 2009b. Micromechanical Damage Modeling and Simulation of Punch Test. Ocean Engineering, 36(15), 1158-1163. https://doi.org/10.1016/j.oceaneng.2009.08.004
- Choung, J., Shim, C.S., Kim, K.S., 2011. Plasticity and Fracture Behaviors of Marine Structural Steel, part III: Experimental Study on Failure Strain. Journal of Ocean Engineering and Technology, 25(3), 53-66. https://doi.org/10.5574/KSOE.2011.25.3.053
- Choung, J., Shim C.S., Song H.C., 2012. Estimation of Failure Strain of EH36 High Strength Marine Structural Steel using Average Stress Triaxiality. Marine Structures, 29(1), 1-21. https://doi.org/10.1016/j.marstruc.2012.08.001
- Choung, J., Nam, W., 2013. Formulation of Failure Strain According to Average Stress Triaxiality of Low Temperature High Strength Steel (EH36). Journal of Ocean Engineering and Technology, 27(2), 19-26. https://doi.org/10.5574/KSOE.2013.27.2.019
- Choung, J., Nam, W., Kim, Y., 2014a. Fracture Simulation of Low-temperature High-strength Steel (EH36) using User-subroutine of Commercial Finite Element Code. Journal of Ocean Engineering and Technology, 28(1), 34-46. https://doi.org/10.5574/KSOE.2014.28.1.034
- Choung, J., Nam, W., Lee, D., Song, S.Y., 2014b. Failure Strain Formulation Via Average Stress Triaxiality of an High Strength Steel for Arctic Structures. Ocean Engineering, 91, 218-226. https://doi.org/10.1016/j.oceaneng.2014.09.019
- Choung, J., Park, S.J., Kim, Y., 2015a. Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies. Journal of Ocean Engineering and Technology. 29(6), 445-453. https://doi.org/10.5574/KSOE.2015.29.6.445
- Choung, J., Park, S.J., Kim, Y., 2015b. Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface. Journal of Ocean Engineering and Technology. 29(6), 454-462. https://doi.org/10.5574/KSOE.2015.29.6.454
- HSE, 2003. Research report 071: Friction in temporary works. Health and Safety Executive. United Kingdom.
- Lehmann, E., Yu, X., 1998. On ductile rupture criteria for structural tear in the case of ship collision and grounding. Proceedings of the Seventh International Symposium on Practical Design of Ships and Mobile Units, 141-147.
- Narr, H., Kujala, P., Simonsen, B.C., Ludolphy, H., 2002. Comparison of the crashworthiness of various bottom and side structures. Marine Sturctures, 15, 443-460. https://doi.org/10.1016/S0951-8339(02)00012-6
- Norsok Standard N-004, 2004. Design of Steel Standards. Standards Norway.
- Paik, J.K., Chung, J.Y., Choe, I.H., Thayamballi, A.K., Pedersen, P.T., Wang, G., 1999. On rational design of double Hull Tanker structures against collision. Annual Meeting of SNAME, 323-363.
- Simulia, 2008. Abaqus User Manual. Silumia.
- Thomas, N., Basu, S., Benzerga, A.A., 2016. On fracture loci of ductile materials under non-proportional loading. International Journal of Mechanical sciences, 117, 135-151. https://doi.org/10.1016/j.ijmecsci.2016.08.007
- Yu, H., Olsen, J.S., He, J., Zhang, Z., 2016. Effects of loading path on the fracture loci in a 3D space. Engineering Fracture Mechanics, 151, 22-36. https://doi.org/10.1016/j.engfracmech.2015.11.005
피인용 문헌
- Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models vol.31, pp.4, 2017, https://doi.org/10.26748/KSOE.2017.08.31.4.288