DOI QR코드

DOI QR Code

Cause Analysis and Countermeasure of Tracking in Mobile Phone Charger

휴대폰 충전기 내 트래킹 발생 원인 분석 및 대책

  • Received : 2016.10.21
  • Accepted : 2016.12.01
  • Published : 2016.12.31

Abstract

The electrolyte of the capacitor in mobile phone chargers leaks to the power input terminal resulting in tracking on the PCB board to form a carbonized conductive path. As a result of structural analysis of the cause of the tracking, It occurred when the power input terminal and the PCB board were connected directly using the connector. The larger the amount of electrolyte leaked from the capacitor into the power input terminal, or the lower the height of the partition provided between the plug pins of the power input terminal, the higher the tracking occurrence rate. Accordingly, to lower the occurrence rate of tracking in the charger, it is necessary to provide a partition on the capacitor or increase the height of the partition provided on the power input terminal so that the leaked electrolyte does not flow to the power input terminal. In addition, the tracking occurrence rate will be reduced further if the shape of the PCB board touching ther power connection terminal is changed to ${\Pi}$.

핸드폰 충전기 내 커패시터의 전해액이 전원 입력단자로 누출되고 PCB 기판에 트래킹이 발생하여 탄화도전로가 형성되는 것을 확인하였다. 트래킹이 발생하는 원인을 구조적으로 분석한 결과, 전원 입력단자와 PCB 기판이 커넥터를 이용하여 직결되는 경우에 발생하였다. 커패시터에서 누출된 전해액이 전원입력단자로 흘러 들어가는 양이 많을수록, 전원입력단자의 플러그 핀 사이에 설치된 격벽의 높이가 낮을수록 트래킹 발생율이 높았다. 이에 따라 충전기 내 트래킹 발생율을 낮추기 위해서는 누출된 전해액이 전원입력단자로 흘러 들어가지 않도록 커패시터에 격벽을 설치하거나, 전원입력단자에 설치된 격벽의 높이를 높일 필요가 있다. 또한, 전원 연결단자와 맞닿아 있는 PCB기판의 형태를 ${\Pi}$로 변경한다면 트래킹 발생율이 더욱 줄어들 것으로 판단된다.

Keywords

References

  1. S. L. Ry, "Safety Survey of Mobile Phone Charger", Korea Consumer Agency, pp. 1-6 (2014).
  2. J. C. Park, "Characteristic Investigation of External Parameters for Fault Diagnosis Reference Model Input of DC Electrolytic Capacitor", Transactions of the Korean Linstitute of Electrical Engineers, Vol. 61P, No. 4, pp. 186-191, DEC (2012). https://doi.org/10.5370/KIEEP.2012.61.4.186
  3. Ch. S. Choi and H. K. Park, "A Study on the Heat Mechanism of Electrolytic Capacitor and Burnout Pattern Analysis", Proceedings of 2011 autumn Annual Conference, Korean Institute of Fire Science & Engineering, pp. 40-43 (2011).
  4. Ch. H. Lee, "A Study on the Tracking Characteristics of Contaminated Insulating Materials of RCD", Korean Institute of Fire Science & Engineering, Vol. 22, No. 5 (2008).
  5. Ch. H. Lee, "A Study on the Damage by Burning Characteristics of Insulating Materials of RCD", Korean Institute of Fire Science & Engineering, Vol. 23, No. 2, pp. 62-66 (2009).
  6. L. J. Kim, "Characteristics Analysis of Reactor and Capacitor for Passive Filter", Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, Vol. 23, No. 2, pp. 82-88 (2009). https://doi.org/10.5207/JIEIE.2009.23.2.082
  7. Thomas M. Blooming, "Capacitor Application Issues", IEEE Trans on IAS, Jul-Aug, pp. 1013-1026 (2008).
  8. M. L. Gasperi, "Life Prediction Modeling of Bus Capacitor in AC Variable-Frequency Drives", IEEE Trans. on Ind. Appl., Vol. 41, No. 6, pp. 1430-1435 (2005). https://doi.org/10.1109/TIA.2005.858258
  9. P. Venet, F. Perisse, M. H. El-Husseini and G. Rojat, "Realization of a Smart Electrolytic Capacitor Circuit", IEEE of Industry Applications Magazine, No. 1, pp. 16-20 (2002).