DOI QR코드

DOI QR Code

L-DOPA Synthesis Using Tyrosinase-immobilized on Electrode Surfaces

  • Rahman, Siti Fauziyah (Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Chonnam National University) ;
  • Gobikhrisnan, Siramulu (Department of Bioscience and Technology, Karunya University) ;
  • Gozan, Misri (Bioprocess Engineering Research Group, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia) ;
  • Jong, Gwi Taek (Department of Biotechnology and Bioengineering, Pukyong National University) ;
  • Park, Don-Hee (Department of Biotechnology and Bioengineering, Chonnam National University)
  • Received : 2016.09.21
  • Accepted : 2016.10.25
  • Published : 2016.12.01

Abstract

Levodopa or L-3,4-dihydroxyphenylalanine (L-DOPA) is the direct precursor of the neurotransmitter dopamine. L-DOPA is a well-known neuroprotective agent for the treatment of Parkinson's disease symptoms. L-DOPA was synthesized using the enzyme, tyrosinase, as a biocatalyst for the conversion of L-tyrosine to L-DOPA and an electrochemical method for reducing L-DOPAquinone, the product resulting from enzymatic synthesis, to L-DOPA. In this study, three electrode systems were used: A glassy carbon electrode (GCE) as working electrode, a platinum, and a Ag/AgCl electrode as auxiliary and reference electrodes, respectively. GCE has been modified using electropolymerization of pyrrole to facilitate the electron transfer process and immobilize tyrosinase. Optimum conditions for the electropolymerization modified electrode were a temperature of $30^{\circ}C$ and a pH of 7 producing L-DOPA concentration 0.315 mM. After 40 days, the relative activity of an enzyme for electropolymerization remained 38.6%, respectively.

Keywords

References

  1. Blaser, H. U. and Schmidt, E., (Eds.), Asymmetric Catalysis on Industrial Scale: Challenges, Approaches, and Solutions, Wiley-VCH Verlag GmbH & Co, Weinheim (2004).
  2. Knowles, W. S., Sabacky, M. J. and Vineyad, L-DOPA process and intermediates, United States Patent. US4005127 (1977).
  3. Koyanagi, T., Katayama, T., Suzuki, H., Nakazawa, H., Yokozeki, K. and Kumagai, H., "Effective Production of 3,4-dihydroxyphenyll- alanine (L-DOPA) with Erwinia Herbicola Cells Carrying a Mutant Transcriptional Regulator TyrR," J. Biotechnol. 115, 303-306(2005). https://doi.org/10.1016/j.jbiotec.2004.08.016
  4. Sayyed, I. A. and Sudalai, A., "Asymmetric Synthesis of l-DOPA and (R)-selegiline via, $OsO_4$-catalyzed Asymmetric Dihydroxylation," Tetrahedron: Asymmetry 15, 3111-3116(2004). https://doi.org/10.1016/j.tetasy.2004.08.007
  5. Park H. S., Lee, J. Y. and Kim, H. S., "Production of L-DOPA (3,4-dihydroxyphenyl-l-alanine) from Benzene by Using a Hybrid Pathway," Biotechnol. Bioeng. 58, 339-343(1998). https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<339::AID-BIT36>3.0.CO;2-4
  6. Kyanagi, T., Katayama, T., Suzuki, H., Nakazawa, H., Yokozeki, K. and Kumagai, H., "Effective Production of 3,4-dihydroxyphenyl-l-alanine (L-DOPA) with Erwinia Herbicola Cells Carrying a Mutant Transcriptional Regulator TyrR," J. Biotechnol. 115, 303-306(2005). https://doi.org/10.1016/j.jbiotec.2004.08.016
  7. Huang, S.-Y., Shen, Y.-W. and Chan, H.-S., "Development of a Bioreactor Operation Strategy for L-DOPA Production Using Stizolobium Hassjoo Suspension Culture," Enzyme Microb. Technol. 30, 779-791 2002). https://doi.org/10.1016/S0141-0229(02)00058-3
  8. Krishnaveni, R., Rathod, V., Nagur, R., Kulkarni, P. and Desai, P., "Role of Parametric Optimization on L-dopa and Cytosolic Tyrosinase Production under SmF from A. rutilum: its Purification and Characterization," Int. J. Curr. Microbiol. App. Sci. 4(10), 350-367(2015).
  9. Wei, T., Cheng, B.-Y. and Liu, J.-Z., "Genome Engineering Escherichia Coli for L-DOPA Overproduction from Glucose," Sci. Rep. 6, 30080(2016). https://doi.org/10.1038/srep30080
  10. Min K., Park, K., Park, D.-H. and Yoo, Y. J., "Overview on the Biotechnological Production of l-DOPA," Appl. Microbiol. Biotechnol. 99, 575-584(2015). https://doi.org/10.1007/s00253-014-6215-4
  11. Zaborsky, Oskar, Immoblized Enzymes, CRC Press, Ohio (1974).
  12. Guisan, J. M., Immobilization of Enzyme and Cells, Human Press, Totowa (2006).
  13. Rahman, S. F., Min, K., Park, S.-H., Park, J.-H., Yoo, J. C. and Park, D.-H., "Highly Sensitive and Selective Dopamine Detection by An Amperometric Biosensor Based on Tyrosinase/MWNT/GCE," Korean J. Chem. Eng., (10.1007/s11814-016-0207-2) (2016).
  14. Yildiz, H. B., Caliskan, S., Kamaci, M. and Caliskan, A., "L-DOPA Synthesis Catalyzed by Tyrosinase Immobilized in Poly(ethyleneoxide) Conducting Polymers," Int. J. Biol. Macromol. 56, 34-40(2013). https://doi.org/10.1016/j.ijbiomac.2013.01.031
  15. Min, K., Park, D.-H. and Yoo, Y. J., "Electroenzymatic Synthesis of L-DOPA," J. Biotechnol. 146, 40-44(2010). https://doi.org/10.1016/j.jbiotec.2010.01.002
  16. Rahman, S. F., Gobikishnan, S., Indrawan, N., Park, S.-H., Park, J.-H., Min, K., Yoo, Y. J. and Park, D. H., "A Study on the Electrochemical Synthesis of L-DOPA Using Oxidoeductase Enzyme: Optimization of An Electrochemical Proses," J. Microbiol. Biotechnol., 22, 1446-1451(2012). https://doi.org/10.4014/jmb.1206.06043
  17. Venugopal, N. and Kim, W.-S., "New ${\alpha}-Zn_2V_2O_7$/carbon Nanotube Nanocomposite for Supercapacitors," Korean J. Chem. Eng. 32, 1918 (2015). https://doi.org/10.1007/s11814-014-0392-9
  18. Sadki, S., Schottland, P., Brodie, N. and Sabouraud, G., "The Mechanism of Pyrrole Electropolymerization," Chem. Soc. Rev. 29, 283-293(2000). https://doi.org/10.1039/a807124a
  19. Liu, X., Zhang, Z., Cheng, G. and Dong, S., "Spectroelectrochemical and Voltammetric Studies of L-DOPA," Electroanal. 15, 2 (2003).
  20. Ramanavicius, A., Ramanaviciene, A. and Malinauskas, A., "Electochemical Sensors Based on Conducting Polymer-pyrrole," Electochim. Acta. 27, 6025-6037(2006).
  21. Erdogan, H., Tuncagil, S. and Toppare, L., "L-DOPA Synthesis on Conducting Polymers," J. Macromol. Sci. A, 47, 209-214 (2010). https://doi.org/10.1080/10601320903526865
  22. Kumar, A. and Gross, R. A., "Candida antartica Lipase B Catalyzed Polycaprolactone Synthesis: Effects of Organic Media and Temperature," Biomacromolecules, 1, 133 (2000). https://doi.org/10.1021/bm990510p
  23. Cao, X., Zhang, R., Tan, W.-M., Wei, C., Wang, J., Liu, Z.-M., Chen, K.-Q. and Ouyang, P.-K., "Plasma Treatment of Multiwalled Carbon Nanotubes for Lipase Immobilization," Korean J. Chem. Eng. 33, 1653(2016). https://doi.org/10.1007/s11814-016-0002-0