DOI QR코드

DOI QR Code

Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors

유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향

  • Yang, Inchan (Department of Chemical Engineering, Myongji University) ;
  • Lee, Gihoon (Department of Chemical Engineering, Myongji University) ;
  • Jung, Ji Chul (Department of Chemical Engineering, Myongji University)
  • Received : 2016.10.07
  • Accepted : 2016.11.04
  • Published : 2016.12.27

Abstract

In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.

Keywords

References

  1. D. Qu and H. Shi, J. Power Sources, 74, 99 (1998). https://doi.org/10.1016/S0378-7753(98)00038-X
  2. P. Thounthong, V. Chunkag, P. Sethakul, S. Sikkabut, S. Pierfederici and B. Davat, J. Power Sources, 196, 313 (2011). https://doi.org/10.1016/j.jpowsour.2010.01.051
  3. S. L. Candelaria, R. Chen, Y. Jeong and G. Cao, Energy Environ. Sci., 5, 5619 (2012). https://doi.org/10.1039/C1EE02634H
  4. R. Burt, G. Birkett and X. S. Zhao, Phys. Chem. Chem. Phys., 16, 6519 (2014). https://doi.org/10.1039/c3cp55186e
  5. T. Sato, S. Marukane, T. Morinaga, T. Kamijo, J. Arafune and Y. Tsujii, J. Power Sources, 295, 108 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.116
  6. H. Yang, J. Yang, Z. Bo, S. Zhang, J. Yan and K. Cen, J. Power Sources, 324, 309 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.072
  7. H. Nishihara and T. Kyotani, Adv. Mater., 24, 4473 (2012). https://doi.org/10.1002/adma.201201715
  8. E. Frackowiak, Q. Abbas and F. Beguin, J. Energy Chem., 22, 226 (2013). https://doi.org/10.1016/S2095-4956(13)60028-5
  9. G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012). https://doi.org/10.1039/C1CS15060J
  10. M. Inagaki, H. Konno and O. Tanaike, J. Power Sources, 195, 7880 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.036
  11. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  12. Z. Yu, L. Tetard, L. Zhai and J. Thomas, Energy Environ. Sci., 8, 702 (2015). https://doi.org/10.1039/C4EE03229B
  13. E. Frackowiak and F. Beguin, Carbon, 19, 937 (2001).
  14. A. Thambidurai, J. K. Lourdusamy, J. V. John and S. Ganesan, Korean J. Chem. Eng., 31, 268 (2014). https://doi.org/10.1007/s11814-013-0228-z
  15. K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. See, D. C. Chung, D. J. Bae, S. C. Lim and Y. H. Lee, Adv. Mater., 13, 497 (2001). https://doi.org/10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
  16. L. L. Zhang, R. Zhou and X. S. Zhao, J. Mater. Chem., 20, 5983 (2010). https://doi.org/10.1039/c000417k
  17. L. Wei and G. Yushin, Nano Energy, 1, 552 (2012). https://doi.org/10.1016/j.nanoen.2012.05.002
  18. J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. Biener, K. A. Rose and T. F. Baumann, Energy Environ. Sci., 4, 656 (2011). https://doi.org/10.1039/c0ee00627k
  19. S. J. Kim, S. W. Hwang and S. H. Hyun, J. Mater. Sci., 40, 725 (2005). https://doi.org/10.1007/s10853-005-6313-x
  20. J. Li, X. Wang, Q. Huang, S. Gamboa and P. J. Sebastian, J. Power Sources, 158, 784 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.045
  21. M. Kim, I. Oh and J. Kim, J. Power Sources, 282, 277 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.040
  22. D. L. Castello, D. C. Amoros, A. L. Solano, S. Shiraishi, H. Kurihara and A. Oya, Carbon, 41, 1765 (2003). https://doi.org/10.1016/S0008-6223(03)00141-6
  23. L. Mao, K. Zhang, H. S. O. Chan and J. Wu, J. Mater. Chem., 22, 1845 (2012). https://doi.org/10.1039/C1JM14503G
  24. J. Kuhn, R. Brandt, H. Mehling, R. Petri evi and J. Fricke, J. Non-Cryst. Solids, 225, 58 (1998). https://doi.org/10.1016/S0022-3093(98)00009-X
  25. D. Wu, R. Fu, Z. Sun and Z. Yu, J. Non-Cryst. Solids, 351, 915 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.02.008
  26. H. D. Yoo, J. H. Jang, J. H. Ryu, Y. Park and S. Mo. Oh, J. Power Sources, 267, 211 (2014).
  27. C. Portet, P.L. Taberna, P. Simon and L. Robert, Electrochim. Acta, 49, 905 (2004). https://doi.org/10.1016/j.electacta.2003.09.043
  28. C. Lei, F. Markoulidis, Z. Ashitaka and C. Lekakou, Electrochim. Acta, 92, 183 (2013). https://doi.org/10.1016/j.electacta.2012.12.092