DOI QR코드

DOI QR Code

SBAS Non-Standard Data Transmission Method for Korea Augmentation Satellite System Applications

KASS 활용을 위한 위성기반 보강항법시스템(SBAS) 비규격 데이터 전송 방법 연구

  • Park, Jae-ik (Lunar Exploration System Team, Korea Aerospace Research Institute) ;
  • Lee, Eunsung (Satellite Navigation Team, Korea Aerospace Research Institute) ;
  • Heo, Moon-beom (Satellite Navigation Team, Korea Aerospace Research Institute) ;
  • Nam, Gi-wook (SBAS Program Office/Satellite Navigation.Application Technology R&D Center, Korea Aerospace Research Institute)
  • Received : 2016.08.31
  • Accepted : 2016.12.20
  • Published : 2016.12.31

Abstract

Korea augmentation satellite system (KASS), which is a satellite-based augmentation system tailored for Korea, was launched for development in 2014. SBAS is a standard for aviation but it can also be utilized in non-aviation applications. The type and content of transmitted in SBAS data format are restricted. In order to utilize SBAS in fields that require the precision within centimeters, additional information has to be transmitted. It is important that data transmitted in nonstandard SBAS data not affect any operation of SBAS equipment. In this paper, we propose a non-standard SBAS data transmission method applicable to non-aviation applications that does not affect aviation SBAS receivers.

지난 2014년 한국형 SBAS (satellite based augmentation system)인 KASS (korea augmentation satellite system) 개발 구축 사업을 본격적으로 착수하였다. SBAS는 항공용으로 제정된 규격이지만, 비항공 분야에서도 활용이 가능하다. SBAS 규격으로 정해져 있는 메시지에 전송되는 정보의 종류 및 내용이 한정되어 있다. 전송되는 정보를 통해 센티미터 수준의 고정밀 위치 정보가 요구되는 분야에서 활용하기에는 정확도 수준이 낮기 때문에 추가적인 정보 제공이 필요하다. 비항공 분야에서 활용되는 정보를 항공기 항법에 영향을 주지 않으면서 안전하게 전송하기 위해서는 이에 대한 방법이 필요하다. 따라서, 이 논문에서는 항공용 SBAS 수신기에 대한 안전을 확보하면서 비항공 분야에서 활용할 수 있는 비규격 SBAS 데이터를 전송하는 방법에 대해 고찰하였다.

Keywords

References

  1. NSTB/WAAS T&E Team, WAAS Performance Analysis Report #57, Retrieved Jul., 15, 2016, from http://www.nstb.tc.faa.gov/reports/waaspan57.pdf
  2. J.-I. Park, E. S. Lee, M.-B. Heo, and G.-W. Nam, "Latest technology trending for satellite based augmentation system," Current Ind. and Technol. Trends in Aerospace, vol. 14, no. 1, pp. 191-202, Jul. 2016.
  3. J.-I. Park, E. S. Lee, M.-B. Heo, and G.-W. Nam, "Study on technical standard of aviation GNSS for SBAS performance based navigation," J. Advanced Navig. Technol., vol. 20, no. 4, Aug. 2016.
  4. KASS Program Office, What is SBAS Program, Retrieved Aug. 30, 2016, from http://www.kass.re.kr.
  5. ICAO, International Standards and Recommended Practices (SARPs) Annex 10-Aeronautical Telecommunications Vol. I, Radio Navigation Aids, International Civil Aviation Organization, 6th Ed., Jul. 2006.
  6. RTCA SC-159, DO-229D with Change 1 Minimum Operational Performance Standards for Global Positioning System/Satellite-Based Augmentation System Airborne Equipment, RTCA Inc., Feb. 2013.
  7. D.-H. Han, H. Yoon, and C.-D. Kee, "A study of message scheduling algorithm for wide area differential GNSS considering international standard," J. Advanced Navig. Technol., vol. 15, no. 4, pp. 517-522, Aug. 2011.
  8. T. Sakai and T. Aso, "Evaluation of the shortened preamble for SBAS message," J. Inst. Positioning, Navig. and Timing of Japan, vol. 15, no. 2, pp. 7-11, 2015.
  9. M. M. M. Tossaint, J. C. De Mateo, P. D. F. Da Silva, and J. Ventura-Traveset, "Verification techniques for the assessment of SBAS integrity performances: a detailed analysis using both ESTB and WAAS broadcast signals," GNSS 2002, Copenhagen, Denmark, May 2002.
  10. J. K. Wolf and R. D. Blakeney II, "An exact evaluation of the probability of undetected error for certain shortened binary CRC codes," MILCOM '88, vol. I, paper 15-2, pp. 287-292, Washington, D.C, 1988.
  11. G. Castagnoli, S. Brauer, and M. Herrmann, "Optimization of cyclic redundancy-check codes with 24 and 32 parity bits," IEEE Trans. Commun., vol. 41, no. 6, pp. 883-892, Jun. 1993. https://doi.org/10.1109/26.231911