Abstract
In this paper, we present a risk prediction system and customized evacuation pathfinding algorithm in fire scenarios. For the risk prediction, we apply a multi-level clustering mechanism using collected temperature at sensor nodes throughout the network in order to predict the temperature at the time that users actually evacuate. Based on the predicted temperature and its reliability, we suggest an evacuation pathfinding algorithm that finds a suitable evacuation path from a user's current location to the safest exit. Simulation results based on FDS(Fire Dynamics Simulator) of NIST for a wireless sensor network consisting of 47 stationary nodes for 1436.41 seconds show that our proposed prediction system achieves a higher accuracy by a factor of 1.48. Particularly for nodes in the most reliable group, it improves the accuracy by a factor of up to 4.21. Also, the customized evacuation pathfinding based on our prediction algorithm performs closely with that of the ground-truth temperature in terms of the ratio of safe nodes on the selected path, while outperforming the shortest-path evacuation with a factor of up to 12% in terms of a safety measure.
본 논문에서는 화재 상황에서의 위험도 예측 시스템과 화재 대피 경로 도출 알고리즘을 제안한다. 온도 예측 시스템에서는 무선 센서 네트워크를 통해 수집한 온도 정보를 기반으로 멀티레벨 클러스터링 기법을 통해 사용자가 대피할 시점의 온도를 예측한다. 예측된 온도와 이의 신뢰도를 바탕으로 사용자의 현재 위치부터 가장 안전한 출구까지의 대피 경로를 도출하는 화재 대피 경로 알고리즘을 제안한다. NIST의 FDS(Fire Dynamics Simulator) 시뮬레이터를 이용하여 47개의 정적 노드로 구성된 무선 센서 네트워크에 대해 1436.41초 동안 성능 평가를 한 결과, 제안하는 온도 예측 시스템을 사용하였을 때, 예측 정확도가 1.48배 증가하였으며, 예측 정확도가 높은 군에 속하는 노드에 대해서는 4.21배로 크게 증가한 것으로 나타났다. 또한, 화재 대피 경로 알고리즘을 통해 도출한 대피 경로가 실제 ground-truth 온도를 사용하여 대피했을 때에 비하여 안전한 노드를 경유하는 비율이 큰 차이를 보이지 않았으며, 최단 대피 경로에 비해서는 약 12% 이상 더 안전한 경로를 도출하였음을 확인할 수 있었다.